
Private Web Search with Malicious Adversaries∗

Yehuda Lindell† Erez Waisbard†

March 24, 2011

Abstract

Web search has become an integral part of our lives and we use it daily for business and pleasure.
Unfortunately, however, we unwittingly reveal a huge amount of private information about ourselves when
we search the web. A look at a user’s search terms over a period of a few months paints a frighteningly
clear and detailed picture about the user’s life. In this paper, we build on previous work by Castellà-Roca
et al. (Computer Communications 2009) and show how to achieve privacy in web searches efficiently
and practically without resorting to full-blown anonymous routing. In contrast to previous work, our
protocol is secure in the presence of malicious adversaries.

1 Introduction

It is well known that users’ search terms to web search engines contain significant amounts of sensitive
information and, as such, the aggregation and use of these terms constitutes a severe privacy breach. The
only way that a user can protect him or herself from this breach today is to use an anonymous routing
system like Tor [9]. However, this can sometimes be an “overkill” measure. This is especially the case since
in order to achieve a high level of security, such systems cause a considerable slowdown.

Recently, an interesting model for solving this problem was suggested by [2]. Essentially, their proposal
is for a group of users to first shuffle their search words amongst themselves. After the shuffle, each user
has someone’s search word (but doesn’t know whose), and the parties then query the search engine with the
word obtained. Finally, the parties all broadcast the result to all others. This model is especially attractive
because it doesn’t involve the overhead of installing a full-blown anonymous routing system, and can be
provided as a simple web service.

In [2], the authors present a protocol for private web search in the above model that is secure in the
presence of semi-honest adversaries. That is, users’ privacy is maintained only if all parties follow the protocol
specification exactly. We argue that this level of security is not sufficient, especially due to the fact that the
protocol of [2] has the property that a single adversarial participant can easily learn the queries of all users,
without any malicious behavior being detected. This means that an adversarial entity who is a participant
in many searches can learn all of the users’ queries without any threat of retribution.

Our results. In this paper we construct a protocol for private web search in the model of [2] that is secure
in the presence of malicious adversaries that may arbitrarily deviate from the protocol specification in order
to attack the system. Our main technical tool is a highly efficient cryptographic protocol for parties to mix
their inputs [3] that guarantees privacy in the presence of malicious adversaries. Unlike the usual setting
of mix-nets, here the parties themselves carry out the mix. The novelty of our approach is based on the
observation that, unlike the setting of voting where mix-nets are usually applied, the guarantee of correctness
is not necessary for private web search. That is, we allow a malicious participant to carry out a “denial of
service” type attack, causing the search to fail. In return, we are able to omit the expensive zero-knowledge
proofs of correctness in every stage of the mix.

∗An extended abstract of this work appeared in PETS 2010 [13]. The main protocol there contained a serious error which
is fixed in this draft.

†Dept. of Computer Science, Bar-Ilan University, Israel. Email: {lindell,waisbard}@cs.biu.ac.il. This research was
generously supported by the European Research Council as part of the ERC projects ”LAST” and ”SFEROT”.

1

We stress that simply removing the correctness proofs from a standard mix protocol yields a completely
insecure protocol that provides no privacy. For example, we still have to deal with “replacement attacks”
where the first party carrying out the mix replaces all of the encrypted search words with terms of its own,
except for the one ciphertext belonging to the user under attack. In this case, the result of the mix completely
reveals the search word of the targeted user (because all other search words belong to the attacker). Our
solution to this problem (and others that arise; see Section 3) is based on the following novel idea: instead of
inputting search words into the mix, each party inputs an encrypted version of its search word. Then, after
all stages of the mix are concluded, each party checks that its encrypted value appears. If yes, it sends true to
all parties, and if not it sends false. If all parties send true, they can then proceed to decrypt the search words
because this ensures that no honest party’s search word was replaced. However, this raises a new challenge
regarding how to decrypt the encrypted search word. Namely, a naive solution to the problem fails. For
example, if each party encrypted their search word using a one-time symmetric key, then sending this key for
decryption reveals the identity of the party whose search word it is. We therefore use a “one-time” threshold
encryption scheme based on ElGamal [10] and have the parties encrypt the search words with the combined
key. The parties then send their key-part in the case that all parties sent true (a similar idea to this appears
in [2] but for a different purpose). We call this a private shuffle in order to distinguish it from a standard
mix-net. We provide a formal definition of security for a private shuffle and have a rigorous proof of security
under this definition.

As we have mentioned, the private shuffle is the main technical tool used for obtaining private web search.
However, as is often the case, the cryptographic protocol at its core does not suffice for obtaining a secure
overall solution. In Section 5 we therefore discuss how a private shuffle primitive can be used to obtain
private web search, and in particular how to bypass non-cryptographic attacks that can be fatal. One major
issue that arises is how to choose the group of participants, and in particular, how to prevent the case that
the adversary controls all but one participant (in which case the adversary will clearly learn the input of the
sole honest party). This issue was not addressed in previous solutions.

Related work. A number of different anonymity-preserving techniques can be used in principal for private
web search. For example, private information retrieval [4, 14] provides the appropriate guarantees. However,
it is far too inefficient. A more natural candidate is a to use a mix-net [3]. However, as we have mentioned,
considerable expense goes into proving correctness in these protocols. In addition, doing this efficiently
and securely turns out to be quite a challenge; see for example [12, 8]. For further comparisons of existing
techniques to the model that we adopt here, we refer the reader to [2] and the references within. We remark
that our protocol is about twice as expensive as the protocol of [2], and thus the efficiency comparisons
between their solution and other existing techniques can be extrapolated to our solution.

2 Definitions
In this section we present our definition of security for a private shuffle primitive. The shuffle functionality
is simply the n-ary probabilistic function f(x1, . . . , xn) = (y1, . . . , yn), such that for every i, yi = xπ(i) where
π is a random permutation over [n]. Intuitively, a shuffle is private if an adversary cannot link between the
inputs of the protocol and the outputs of the protocol. Namely, the adversary should not be able to link
yj to an honest party Pi where j = π(i). Denoting the number of corrupted parties by t, we have that a
random guess regarding a “link” is correct with probability 1

n−t . Thus, we formalize security by requiring
that an adversary controlling t parties can output (i, j) where Pi is honest and j = π(i) with probability
that is at most negligibly greater than 1

n−t .

The security experiment. We assume that the parties communicate over an open network with unau-
thenticated channels. We model this network by having all communication go through an adversary that can
listen to all the communication, delete messages and inject messages of its choice. This is formally modeled
by providing the adversary with stateful oracles that model the honest parties, as in [1]. The experiment
modeling the success of the adversary appears in Figure 1.

2

FIGURE 1 (The Security Experiment ExptShufflet,nA,π(k))

1. Invoke the adversary A with input 1k and with parameters t and n (k is the security parameter, t the
number of corrupted parties, and n the overall number of parties).

2. Receive from A a set of t indices I ⊂ [n] designating the corrupted parties (note that |I| = t), and a
vector of n− t distinct inputs w1, . . . , wn−t for the honest parties.

3. Choose a random permutation π over {1, . . . , n− t} and initialize the ith honest-party oracle with input
wπ(i).

4. Execute the shuffle protocol, where A interacts with the n − t oracles (each oracle runs the specified
shuffle protocol as an honest party responding to the messages it receives from A).

5. When it concludes, the adversary outputs a pair (i, j) for any i, j of its choice.

We say that the adversary succeeds in the experiment, in which case the output of the experiment
ExptShufflet,nA,π(k) equals 1, if and only if π(i) = j.

Defining security. We are now ready to define security. First, we require non-triviality, meaning that if
all parties are honest, then the protocol output is a permuted vector of the inputs. Next, we require that an
adversary controlling t out of the n parties can succeed in the experiment ExptShuffle with probability that
is only negligibly greater than 1

n−t (where negl is a negligible function if for every polynomial p and all large
enough k’s it holds that negl(k) < 1/p(k)):

Definition 2 A protocol π is a private shuffle if it is non-trivial, and if for every probabilistic polynomial-
time algorithm A, every integer n ∈ N and every 0 < t < n, there exists a negligible function negl(·) such
that:

Pr
[
ExptShufflet,nA,π(k) = 1

]
≤ 1

n− t
+ negl(k).

3 Constructing a Private Shuffle

In order to motivate our construction, we begin by describing the protocol of [2] that is secure in the presence
of semi-honest adversaries. We then describe the difficulties that arise when moving to the malicious model.
The main tool that is used in [2] is called ElGamal remasking, which takes a ciphertext and rerandomizes it
into a new ciphertext c′ without requiring knowledge of the secret key.1 See Protocol 3 for an outline of the
construction of [2].

Attacks on private shuffle protocols. Although Protocol 3 was defined for the semi-honest model, it
is instructive to see what attacks can be carried out by a malicious party:

Targeted public-key attack: A malicious Pn may compute its share of the public key after given all of the
gxi values of the other parties. Specifically, Pn sets its share of the public-key to be h = gxn/(

∏n−1
i=1 gxi)

for a random xn. Observe that any encryption under y =
∏n

i=1 g
xi is actually an encryption under gxn

alone because h · y = gxn . Thus, Pn can decrypt the values of all parties and learn who sent what. In
order to escape detection, in its remasking step, party Pn can re-encrypt all of the search terms (which it
already learned) under a new y′ = gx

′
n ·

∏n
i=1 g

xi for a value x′
n that it knows (if it doesn’t do this, then

it cannot complete the last step because it doesn’t know its share of y). This enables it to complete the
last stage correctly and thus the attack would go completely unnoticed.

Stage-skipping attack: A malicious party Pn may remask and permute the initial vector of ciphertexts sent
by the parties instead of the vector that it received from Pn−1. In this case, when the vector is decrypted
Pn will know exactly which party sent which message. Observe that this behavior would not be detected
because the remask operation looks identical when applied once or n times.

1A rerandomization of a ciphertext is a procedure that takes an encryption of some message m and generates a new ciphertext
that is also an encryption of m, where the randomness used to generate the two ciphertext is independent.

3

Protocol 3 (The protocol of [2] for semi-honest adversaries (overview))

1. Parties P1, . . . , Pn generate a joint ElGamal public key y =
∏n

i=1 g
xi , where xi denotes the private

key of each party.

2. Every party Pj encrypts its search word wj using the joint public key, obtaining c0j = (u0
j , v

0
j), and

sends it to everyone.

3. For every i = 1, . . . , n, party Pi does the following:

(a) Pi remasks the ciphertexts (ci−1
1 , . . . , ci−1

n) it received from Pi−1.

(b) Pi randomly permutes the remasked ciphertexts.

(c) Pi sends the shuffled and remasked ciphertexts to Pi+1, except for party Pn who broadcasts
the result to all the parties.

4. Given the shuffled and remasked ciphertexts (cn1 , . . . , c
n
n), every party Pi decrypts a single ciphertext

cni = (un
i , v

n
i). This is carried out as follows:

(a) Every party Pj sends each Pi the share (un
i)

xj for every i, j ∈ {1, . . . , n}, where xj is Pj ’s
private key.

(b) Given the shares from all parties, every Pi computes wi =
vn
i∏n

j=1(u
n
i)

xj .

Input-replacement attack: A malicious party P1 can learn the input wj of an honest party Pj by replacing
all the ciphertexts in the input vector with individually remasked copies of the initial ciphertext (u0

j , v
0
j).

In this case, all of the parties receive wj ; in particular P1 receives wj and so knows the search term of Pj .

Input-tagging attack: A malicious party P1 can change its own message to effectively “tag” a message of an
honest party Pj . Specifically, P1 can set c11 to equal a remasked version of (u0

j , v
0
j · δ) for some random δ

and this would result in the keyword of P1 being w1 = wj ·δ. This enables P1 to learn Pj ’s exact keyword
by searching for a pair of terms w,w′ in the final result for which w′ = δ · w. We note that this attack
can also be carried out on the protocol that appears in the extended abstract of this work [13].

Private shuffle for malicious adversaries. Our protocol for private shuffle that achieves security in the
presence of malicious adversaries is based on the following ideas. First, we don’t use a “remask” method as
in [2] since this is inherently vulnerable to an input-tagging attack; rather we use an onion-layered encryption
method with CCA2-secure encryption. This ensures non-malleability and so no party can make its ciphertext
be related to another party’s ciphertext. Next, in order to guarantee privacy, we need to ensure that at least
one honest user “remasks and permutes” all of the ciphertext values. This involves ensuring that all parties
take part in the shuffle and that the parties shuffle the actual input values (that is, we need to ensure that
neither a stage-skipping nor input-replacement attack is carried out). The classic way of achieving this
in the mix-net literature [3, 12, 8] is to have each party Pi prove (at each stage) that the values that it
passed onto Pi+1 are indeed a remasked and permuted version of what Pi received from Pi−1. However,
this is a costly step that we want to avoid. We therefore provide an alternative solution that is based on a
two-stage protocol with two phases of encryption of each input. First, each party encrypts its search term
with threshold El Gamal, where the shares of all parties are needed for decryption. Next, the El Gamal
ciphertext is encrypted in an onion form using CCA2-secure encryption. That is, the El Gamal ciphertext
is re-encrypted n times under the encryption key of each party yielding Epk1(Epk2(· · ·Epkn(c) · · ·)), where
c is the El-Gamal encrypted search term. Now, given all of these ciphertexts, the parties in turn randomly
permute the ciphertexts and remove the encryption layer under their CCA2-secure key. Then, at the end of
this stage there is a verification step in which all parties check that their input value is still in the shuffled
array (under the inner encryption). Note that since the result is the series of El-Gamal encrypted search
terms, these have high entropy and so cannot be guessed. If all parties acknowledge that their value is
present then we are guaranteed that all parties participated in the shuffle and that no inputs were replaced.

4

We can therefore safely proceed to the second stage of the protocol where the inner encryption is privately
removed, revealing the shuffled inputs. In addition to the above, we prevent the aforementioned targeted
public-key attack by having each party prove that it knows its associated secret key.

We note that in order to prevent a powerful man-in-the-middle adversary from playing the role of all
parties except for one, we assume the existence of a PKI for digital signatures; see Section 5 for a discussion
of how to achieve this in practice. In addition, we assume that all parties hold a unique session identifier sid
(e.g., this could be a timestamp), and a group G of order q with generator g, to be used for the El Gamal
encryption. Let E = (G,E,D) denote a CCA2-secure public-key encryption scheme.

Protocol 4 (Private Shuffle with Malicious Adversaries)

Input: Each Pj has a search word wj , and auxiliary input (G, g, q) as described.

Initialization Stage:

1. Each party Pj chooses a random αj ∈ Z∗
q and computes hj = gαj , and chooses a pair of keys

(skj , pkj) ← G(1k) for the CCA2-secure encryption. Pj sends (hj , pkj) to all the other parties and
proves knowledge of αj using a non-malleable non-interactive zero-knowledge proof of knowledge as
in [7]. Pj signs the message it sends together with the identifier sid using its certified private signing
key (from the PKI).

2. Each party verifies the signatures on the messages and the proofs that it received and aborts unless
all are correct.

3. Each party Pj encrypts its input wj using El Gamal with the public key h =
∏n

i=1 hi = g
∑n

i=1 αi .
That is, it chooses a random ρj ∈R Z∗

q and computes an encryption mj = (gρj , hρj · wj).

4. Each party Pj computes cj = Epk1(Epk2(· · · (Epkn(mj)) · · ·)) and sends cj to P1.

The output of this phase is the list of the encrypted cj ’s of all the parties, denoted µ0 = ⟨c01, . . . , c0n⟩.
Shuffle stage: For j = 1, . . . , n, Pj receives vector µj−1 and computes a shuffled version µj as follows:

1. Pj checks that there are no duplications in µj−1. If there are, it aborts.

2. Pj decrypts every cj−1
i in µj−1 by computing cji = Dskj (c

j−1
i)

3. Pj randomly permutes the list of values cji computed above; denote the result by µj .

4. Pj sends µj to Pj+1; the last party Pn sends µn to all parties.

Verification stage:

1. Every party Pj checks that its El-Gamal ciphertext mj appears in the vector µn. If yes it sends
(sid, Pj , true), signed with its private signing key, to all the other users. Otherwise it sends (Pj , false).

2. If Pj sent false in the previous step, or did not receive a validly signed message (sid, Pi, true) from
all other parties Pi, then it aborts. Otherwise, it proceeds to the next step.

Reveal stage:

1. For every (ui, vi) in µn, party Pj sends its share of the decryption sji = u
αj

i to Pi.

2. After receiving all the shares sij , every party Pj computes w′
j =

vj∏n
i=1 sij

=
vj

u

∑n
i=1

αi
j

, thereby decrypt-

ing the El Gamal ciphertext and recovering the search word w′
j (here j denotes the current index in

µn and not the index of the party who had input wj at the beginning of the protocol).

Remarks on the protocol:

1. For the sake of efficiency, the non-malleable non-interactive zero-knowledge proof of knowledge in the
initialization stage can be implemented by applying the Fiat-Shamir heuristic [11] to Schnorr’s protocol
for discrete log [15]. In order to achieve independence (i.e., the ability to extract from the adversary
while simulating proofs from the honest parties), we also include the sid and the party ID of the prover
inside the hash for generating the “verifier query”; see Appendix A for more details. It is also possible

5

to use the methodology of [5] and an interactive zero-knowledge proof of knowledge, at the expense of
log n rounds of communication, but then without relying on random oracles for efficiency.

2. Any public-key CCA2-secure encryption scheme can be used in our protocol; the Cramer-Shoup
scheme [6] is a good choice in that it provides CCA2-security without random oracles.

3. Observe that each input wj is encrypted n + 1 times; first with ElGamal and then n times using a
CCA2-secure encryption scheme. This can cause a problem since each encryption increases the size of
the ciphertext, whereas the input to a given scheme is usually limited (e.g., with Cramer-Shoup, the
plaintext is a single group element, whereas the ciphertext is a number of group elements). This is solved
using standard techniques of hybrid encryption. Specifically, just define Epk(m) = (Epk(K), E′

K(m))
where E is a CCA2-secure public-key encryption scheme and E′ is a CCA2-secure symmetric encryption
scheme. Observe that two layers of encryption are computed as

Epk1
(Epk2

(m)) = Epk1
(K1), E

′
K1

(Epk2
(K2), E

′
K2

(m)).

We therefore have a CCA2-secure encryption scheme that can take inputs of any length.

4. In the first stage of the protocol every party participates in the shuffle. However, as we will see in
the proof it suffices to ensure that one honest party participated. Thus, if we assume that at most t
parties are malicious (for t < n), then we can run the shuffle stage for j = 1 to t+1 only, reducing the
number of rounds from n to t+ 1.

Non-triviality. The non-triviality requirement of a private shuffle is that if all parties are honest then the
output is a permutation of the input values (w1, . . . , wn). It is clear that after the shuffle stage, the result
is a permuted vector containing the El-Gamal ciphertexts m1, . . . ,mn. The fact that the decryption in the
last stage works follows from the fact that

vj∏n
i=1 s

i
j

=
vj

u
∑n

i=1 αi

j

=
hρj · wj

gρj ·
∑n

i=1 αi
=

gρj ·
∑n

i=1 αi · wj

gρj ·
∑n

i=1 αi
= wj ,

as required.

4 Security of the Shuffle Protocol

As we have discussed above, the security of the protocol is based on the fact that the ciphertexts are shuffled
by everyone while removing the layers of the outer encryption. The fact that a CCA2-secure encryption
scheme is used prevents an attacker not only from changing any of the messages of the honest parties during
the shuffle stage in a way that would not be detected in the verification stage, but also from creating
ciphertexts which are related to the plaintexts of the honest parties. Assuming that everyone sent true in the
verification stage we know that indeed all of the original ciphertexts were shuffled and that all of the parties
took part in the shuffle. We can therefore open the El-Gamal encryption decryption layer, and be confident
that every party learns exactly one plaintext without knowing to which party it belongs. Of course, this
decryption stage must not reveal anything about who encrypted which El-Gamal ciphertext. This is achieved
by using the threshold decryption method described in the protocol. In this section we prove the following
theorem, stating that an adversary can succeed in guessing an honest party’s search word with probability at
most negligibly greater than 2/(n− t). We actually conjecture that the true success probability is 1/(n− t),
but currently have only proven the bound of 2/(n− t).

Theorem 5 Assume that the decisional Diffie-Hellman (DDH) assumption holds in (G, g, q) and that E =
(G,E,D) is a CCA2-secure encryption scheme. Then, for every probabilistic polynomial-time adversary A
there exists a negligible function negl(·) such that for every integer n ∈ N and every 0 < t < n,

Pr
[
ExptShufflet,nA,π(k) = 1

]
≤ 2

n− t
+ negl(k).

6

Proof: The structure of our proof is as follows. We first prove that if the adversary tampers with any
of the ciphertexts of the honest parties in any of the rounds of the shuffle, then it will be detected in the
verification stage with overwhelming probability. This follows by a reduction to the security of the CCA2-
secure encryption scheme (and the fact that the El-Gamal encryption have high entropy). Next, we prove
that if the adversary is detected in the verification stage, then the adversary can succeed in the shuffle
experiment with probability at most 1

n−t +negl(k). Intuitively, this is due to the fact that the honest parties
do not open the El-Gamal encryptions and so the original search terms are kept secret. Indeed, this is
formally proven via a reduction to the security of El Gamal. Finally, we prove that if the adversary does not
tamper with any of the ciphertexts during the rounds of the shuffle (and so the verification stage passes),
then it cannot succeed in the shuffle experiment with probability greater than 1

n−t + negl(k). Intuitively,
this is due to the fact that the CCA2-secure encryption and the random permutations ensure that a shuffle
carried out by an honest party breaks all connection between the original search terms and the parties
who encrypted them. Once again, this is formally proven via a reduction to the CCA2-secure encryption
scheme. Combining the above together, we have that the probability that the adversary succeeds is at most
2/(n− t) + negl(k), as required.

Notation: Throughout the proof we use the subscript i to denote a message that was originated by party
i regardless of its location in the ciphertext vector at any given round. In particular, mi is the result of
applying the inner ElGamal encryption to wi and ci is the result of applying all the layers of the outer
encryption to mi.

We now define two random variables missing and AllVerify. Intuitively, missing = 1 if there exists a round
ℓ where at least one of the ciphertexts of the honest parties (appropriately decrypted to that round) does
not appear in the vector µℓ. The random variable AllVerify = 1 if all the honest parties send true in the
verification stage of the protocol. Formally:

Definition 6 Let Cℓ be the set of ciphertexts in the vector µℓ−1, sent from Pℓ−1 to Pℓ in the protocol
execution, where Pℓ is honest. We define the random variable missingℓ where missingℓ = 1 if and only if
ℓ ∈ [n] \ I and {

Dpkℓ−1
(Dpkℓ−2

(· · · (Dpk1(ci)) · · ·))
}
i∈[n]\I

̸⊆ Cℓ

where {ci}i∈[n]\I is the set of ciphertexts sent by all honest parties to P1 in the protocol execution. We define
missing so that missing = 1 if and only if there exists an ℓ such that missingℓ = 1. Finally, we define the
random variable AllVerify such that AllVerify = 1 if and only if all honest parties send true in the verification
stage of the protocol.

We note that if an honest party Pℓ does not receive vector µℓ−1 at all in the execution (e.g., if it is bypassed
by the adversary), then missingℓ certainly holds. We are now ready to state our first claim. Intuitively, it
states that the probability that an honest party’s ciphertext was missing and yet all honest parties send true
is negligible.

Claim 7 If E = (G,E,D) is a CCA2-secure encryption scheme, then there exists a negligible function negl(·)
such that

Pr[missing = 1 ∧ AllVerify = 1] ≤ negl(k).

Proof: We prove that if missing = 1 and AllVerify = 1, then the adversary must have guessed the value of the
El-Gamal encryption mi, where ci is the “missing ciphertext”’; i.e., Dpkℓ−1

(Dpkℓ−2
(· · · (Dpk1(ci)) · · ·)) /∈ Cℓ.

Intuitively, this is the case since cj is not decrypted by one of the honest parties. Thus, the security of E
under that honest party’s key implies that mi remains secret. Now, all of the encryptions mi are of high
entropy (simply by the fact that G is a large group). Thus, the probability that an adversary succeeds in
guessing mi so that party Pi will send true in the verification stage is negligible. Let missingiℓ = 1 if

Dpkℓ−1
(Dpkℓ−2

(· · · (Dpk1(ci)) · · ·)) /∈ Cℓ.

7

Let ℓ be the smallest round for which missingℓ = 1 and let i be the smallest index for which missingiℓ = 1;
we say that such an (ℓ, i) are minimal for missingiℓ = 1 (note that the minimality of ℓ comes first, although
all we need is to specific a specific ℓ, i). We now construct a CCA-2 adversary Acca that works as follows.2

First, Acca guesses i and ℓ, hoping that they will be minimal for missingiℓ = 1. Next, Acca sets pkℓ = pk where
pk is the CCA2 public-key that it receives as part of the CCA2 encryption experiment. Then, it computes
two independent El-Gamal encryptions mi,m

′
i of wi and computes cℓ+1

i = Epkℓ+1
(· · · (Epkn(mi)) · · ·) and

c′
ℓ+1
i = Epkℓ+1

(· · · (Epkn(m
′
i)) · · ·) as the pair of plaintexts for generating the challenge ciphertext in the

CCA2 experiment. Observe that the challenge ciphertext that Acca obtains in the encryption experiment
is the encryption cℓi of mi (or m′

i) under the keys pkn, . . . , pkℓ. Thus, Acca can continue to encrypt the
ciphertext with keys pkℓ−1, . . . , pk1 and the result will be

ci = Epk1(· · · (Epkn(EG(wi))

where EG(w) denotes an El Gamal encryption of wi. From here on, Acca perfectly simulates the shuffle
experiment for adversary A. This involves playing all honest parties, which is straightforward for every Pj

with j ̸= ℓ because it can choose all of the keys itself. The only problem is that Acca must also play the
honest party Pℓ, including running the ℓth shuffle which involves decrypting all of the ciphertexts in µℓ−1

with skℓ. However, Acca does not have skℓ. Here, we use the fact that E is CCA2-secure and so in the CCA2
encryption experiment, Acca can use the decryption oracle to decrypt everything but its challenge c = cℓi .
This is the crucial point of the proof here; in the case that missing = 1 and Acca guessed (i, ℓ) correctly,
we have that missingiℓ = 1 and so cℓi does not appear in the vector µℓ−1. Thus, Acca can decrypt the entire
vector using its decryption oracle and can generate a valid µℓ, just like in the real shuffle experiment. Now,
if AllVerify = 1, then either the El Gamal encryption mi or the El Gamal encryption m′

i must appear in the
verification stage. However, these are of high entropy (they each contain a random element gρi from G) and
the view of the shuffle experiment only contains one of them, depending on if the challenge ciphertext is
an encryption of cℓ+1

i (in which case only mi appears) or c
′ℓ+1
i (in which case only m′

i appears). Thus, the
encryption mi or m

′
i appearing in the verification stage must be from the challenge ciphertext, except with

negligible probability. This implies that Acca is able to guess which plaintext was encrypted, in contradiction
to the security of E .

We now formally describe Acca. Let t and n be parameters, let ϵ : N → [0, 1] be a function, and let A be
an adversary for the private shuffle experiment such that Pr[missing = 1 ∧ AllVerify = 1] = ϵ(k) with t and
n.

The adversary Acca: Upon input 1k and public-key pk, and with oracle access to Dsk(·):

1. Acca invokes A upon input 1k and with parameters t and n and obtains back the set I of indices of the
corrupted parties, and the distinct words w1, . . . , wn−t.

2. Acca chooses random ℓ, i ∈R [n] \ I.

3. Acca interacts with A, playing the honest parties in the shuffle protocol as follows:

(a) Acca sets up the keys of the honest parties like in the protocol, except for Pℓ for which it chooses
a random αℓ like an honest party, but sets pkℓ = pk, where pk is its input above.

(b) Acca computes the ciphertexts cj exactly like the honest parties in the protocol, except for ci.
This ciphertext is computed by computing two independent El-Gamal encryptions mi,m

′
i of wi

and computing cℓ+1
i = Epkℓ+1

(· · · (Epkn(mi)) · · ·) and c′
ℓ+1
i = Epkℓ+1

(· · · (Epkn(m
′
i)) · · ·). Then,

Acca outputs (cℓ+1
i , c′

ℓ+1
i) and receives back the challenge ciphertext c. Finally, ci is set to

Epk1(· · · (Epkℓ−1
(c)) · · ·). In addition, in the ℓth round of the shuffle stage,

2Recall that in the CCA2 encryption experiment, Acca receives a public key pk and oracle access to Dsk(·). Then, Acca

outputs a pair of plaintexts m0,m1 and receives back a challenge ciphertext c = Epk(mb) for a random bit b ∈R {0, 1}. Finally,
Acca continues to receive oracle access to Dsk(·) with the exception that it cannot query c itself, and outputs a guess b′.

8

(c) Acca runs the shuffle stages of the protocol like the honest parties, with the following exceptions.
First, if there exists an (ℓ′, i′) such missingiℓ = 1 and ℓ′ < ℓ or ℓ′ = ℓ but i′ < i (where ℓ and i
are as guessed above), then Acca aborts and outputs a random bit. Furthermore, if missingiℓ = 0,
then Acca aborts and outputs a random bit. Otherwise, Acca carries out the shuffles of all honest
parties apart from Pℓ exactly as in the protocol specification, and it carries out the shuffle of Pℓ

using Dsk(·) = Dskℓ
(·); it can do this since missingiℓ = 1 and so the challenge ciphertext c does

not appear in µℓ−1.

4. In the verification stage Acca checks if either mi,m
′
i appear. If neither appear, then Acca outputs a

random bit. Otherwise, if mi appears it outputs 0 and if m′
i appears in outputs 1.

We have already discussed the intuition behind this attack strategy by Acca, and so we now proceed to
prove that Acca outputs the correct b with probability 1/2 + ϵ(k)/(n − t)2 which is non-negligible if ϵ(k) is
non-negligible.

Define fail to be the event causing Acca to output a random bit in its attack. We have:

Pr[ExptccaAcca,E(k) = 1] = Pr[ExptccaAcca,E(k) = 1 | ¬fail] · Pr[¬fail] + Pr[ExptccaAcca,E(k) = 1 | fail] · Pr[fail]. (1)

Now, by the definition of fail, we have that Pr[ExptccaAcca,E(k) = 1 | fail] = 1/2. In addition, if fail does not

occur then one of mi,m
′
i appear in the last vector and in the verification stage. Now, if cℓi was encrypted in

the encryption experiment, then information theoretically the value of m′
i does not appear anywhere in the

shuffle experiment. Thus, the probability that m′
i appears in the verification stage is at most 1/q which is

negligible (this holds because G is of order q and the first element of m′
i is a random element of G). Thus,

the probability that Acca outputs an incorrect bit, condition on fail not happening is at most negligible, and

Pr[ExptccaAcca,E(k) = 1 | ¬fail] ≥ 1− negl(k)

for some negligible function negl(·). It remains to compute Pr[fail] and Pr[¬fail], in order to evaluate Eq. (1).
We will compute Pr[¬fail]:

Pr[¬fail] = Pr[¬fail | missing = AllVerify = 1] · Pr[missing = AllVerify = 1]

+ Pr[¬fail | missing = 0 ∨ AllVerify = 0] · Pr[missing = 0 ∨ AllVerify = 0]

By the assumption regarding A, we have that Pr[missing = AllVerify = 1] = ϵ(k), and so it follows that
Pr[missing = 0∨AllVerify = 0] = 1− ϵ(k). Next, if missing = AllVerify = 1, then Acca only outputs a random
bit if it did not choose the minimal (ℓ, i). Since ℓ, i ∈R [n] \ I, we have that Acca chooses the minimal (ℓ, i)
with probability exactly 1/(n− t)2. Thus,

Pr[¬fail | missing = AllVerify = 1] =
1

(n− t)2
.

In contrast, when missing = 0 or AllVerify = 0, then Acca always outputs a random bit. Thus,

Pr[¬fail | missing = 0 ∨ AllVerify = 0] = 0.

Combining the above, we have that

Pr[¬fail] = ϵ(k)

(n− t)2
and Pr[fail] = 1− ϵ(k)

(n− t)2
.

Plugging this into Eq. (1), we conclude that

Pr[ExptccaAcca,E(k) = 1] = (1− negl(k)) · ϵ(k)

(n− t)2
+

1

2
·
(
1− ϵ(k)

(n− t)2

)
=

ϵ(k)

(n− t)2
+

1

2
− ϵ(k)

2(n− t)2
− negl′(k)

=
1

2
+

ϵ(k)

2(n− t)2
− negl′(k).

9

Thus, if ϵ(k) is non-negligible, then Acca succeeds in ExptccaAcca,E(k) with probability that is non-negligibly
greater than 1/2. By the CCA2-security of E we conclude that ϵ(k), is negligible, thereby completing the
proof.

We have proven that Pr[missing = 1∧AllVerify = 1] is negligible. In order to see how the rest of the proof
will proceed, we observe that:

Pr[ExptShufflet,nA,π(k) = 1]

= Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 1] + Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0]

= Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 1 ∧ AllVerify = 1]

+ Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 1 ∧ AllVerify = 0]

+ Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0]

≤ Pr[missing = 1 ∧ AllVerify = 1] + Pr[ExptShufflet,nA,π(k) = 1 ∧ AllVerify = 0]

+ Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0]

≤ Pr[ExptShufflet,nA,π(k) = 1 ∧ AllVerify = 0] + Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0] + negl(k)

where the last equation is by what we have already proven. Thus, it remains to prove that

Pr[ExptShufflet,nA,π(k) = 1 ∧ AllVerify = 0] ≤ 1

n− t
+ negl(k) (2)

and

Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0] ≤ 1

n− t
+ negl(k) (3)

in order to conclude that

Pr[ExptShufflet,nA,π(k) = 1] ≤ 2

n− t
+ negl(k),

as required.
Stated in words, Eq. (2) means that if the verification fails and thus the protocol aborts, the adversary

cannot succeed more than by just making a random guess. Intuitively, this is the case since when the
verification fails the honest parties do not remove the El Gamal encryption of the actual search words. Next,
Eq. (3) states that if the ciphertexts of all the honest parties appear in every shuffle carried out by the
honest parties, then once again the adversary cannot succeed more than by just making a random guess.
Intuitively, this is because this guarantees that at least one honest party shuffled all of the honest parties’
ciphertexts, and so the adversary cannot connect the output search words to the users.

We prove both of these equations by first defining a one round permutation experiment. The experiment
is defined similarly for the case of CPA and CCA2 secure encryption; the CPA-case is used for proving
Eq. (2) (which is based on the CPA security of El Gamal) and the CCA2-case is used for proving Eq. (3)
(which is based on the CCA2-security of the encryption scheme). Note that in the case of CCA2-security, the
adversary is also provided with access to a decryption oracle. We denote the attack type (CPA or CCA2)
in the definition by T ; formally T ∈ {CPA,CCA2}. We also denote the encryption scheme used in the
experiment by E = (Gen,Enc,Dec).

Experiment Permutation Exptpermute
A,E,T (n) :

1. Run Gen(1n) to get a key pair (sk, pk).

2. Invoke the adversary A on security parameter 1n and public-key pk. If T = CCA, then A is also given
oracle access to Decsk(·).

3. A returns a list of distinct messages w1, . . . , wn−t of the same length.

10

4. Choose a random permutation π over {1, . . . , n− t} and compute c1, . . . , cn−t where for every i, ci =
Epk(mπ(i)).

5. Give the adversary A the ciphertexts c1, . . . , cn−t. If T = CCA, then A is also given oracle access to
Decsk(·), with the exception that it cannot query any of c1, . . . , cn−t.

6. A outputs a pair (i, j)

7. The output of the experiment is 1 if and only if j = π(i).

Claim 8 If the encryption scheme E is T -secure for T ∈ {CPA,CCA2}, then for every probabilistic
polynomial-time adversary A, there exists a negligible function negl(·) such that

Pr
[
Exptpermute

A,E,T (n) = 1
]
≤ 1

n− t
+ negl(k)

Proof Sketch: We construct an adversary for the regular CPA/CCA2 encryption experiment for multiple
messages (i.e., the adversary outputs two vectors of messages and tries to guess which one was encrypted).
This adversary takes the vector α1, . . . , αn−t of messages output by the adversary for Exptpermute

A,E,T and outputs
two random permutations of the messages. It then receives back an encryption of one of them. After
completing the experiment it receives back (i, π(i)) and checks if this is correct for exactly one of the
permutations. If yes, it guesses that this is the encrypted one. If not (either it is correct for both or incorrect
for both), then it outputs a random guess. It can be shown that this strategy yields a non-negligible advantage
in the CPA/CCA2 experiment if there is an adversary with a non-negligible advantage in the Exptpermute

A,E,T
experiment.

We now use Claim 8 in order to prove Eq. (2).

Claim 9 Assume that the decisional Diffie-Hellman (DDH) assumption holds relative to (G, q, g) as used in
the protocol. Then, for every probabilistic polynomial-time adversary A there exists a negligible function negl
such that

Pr[ExptShufflet,nA,π(k) = 1 ∧ AllVerify = 0] ≤ 1

n− t
+ negl(k)

Proof: Assume, by contradiction, that there exists an adversary A for which the event “ExptShufflet,nA,π(k)∧
AllVerify = 0” holds with probability that is non-negligibly greater than 1/(n− t). Let ϵ(k) be such that

Pr[ExptShufflet,nA,π(k) = 1 ∧ AllVerify = 0] =
1

n− t
+ ϵ(k)

We use A to construct an adversary Acpa that breaks Exptpermute
A,E,cpa with the encryption scheme being El Gamal

(using (G, q, g)).

The adversary Acpa: Upon input security parameter 1k and a public key h = gα (where α is unknown):

1. Acpa invokes A with k, t, n in ExptShufflet,nA,π(k) and receives back a set of t indices I and a vector
w1, . . . , wn−t of distinct inputs for the honest parties.

2. Acpa sets the El Gamal key h of the first honest party to be gα and picks n− t− 1 random El Gamal
private keys αj ∈ Z∗

q for all other honest parties. Let ℓ denote the index of the first honest party; i.e.,
hℓ = h = gα. In addition, Acpa chooses n − t key pairs (skj , pkj) for the CCA2-secure scheme in the
protocol.

3. Acpa gives A all of the public keys of the honest parties {hj , pkj}j /∈I along with the proof of knowledge
(this proof is simulated for the first honest party since Acpa doesn’t know α).

11

4. Acpa outputs w1, . . . , wn−t (to the experiment) and receives a vector of ciphertexts m̂1, . . . , m̂n−t

encrypted under hℓ = h = gα and permuted.

5. Acpa extracts all of the {αi}i∈I secret keys from adversary using the extractor of the proof of knowledge.

6. Given all of the El Gamal keys except for α, the adversary Acpa transforms the El Gamal encryptions
under pk to El Gamal encryptions under all keys

∑n
i=1 αi as follows. For every m̂j = (uj , vj) =

(grj , hrj · wπ(j)) = (grj , (grj)αℓ · wj) it computes

mj =
(
uj , (uj)

∑
i ̸=ℓ αi · vj

)
=

(
grj , (grj)

∑
i̸=ℓ αi · (grj)αℓ · wπ(j)

)
=

(
grj ,

(
g
∑n

i=1 αi

)rj
· wπ(j)

)
which is therefore a valid encryption of wπ(j) under all keys.

7. Acpa encrypts each mj in n layers using E , as in the protocol.

8. Acpa executes the private shuffle protocols, for every round between 1 and n, as follows:

(a) If it is an honest user’s round, it permutes and decrypts one layer of the outer encryption.

(b) If it is an corrupted party’s round, Acpa gives the vector to A and receives back a new vector.

9. At the verification stage:

(a) If AllVerify = 1 (which Acpa can check) then Acpa just aborts.

(b) Otherwise, Acpa simulates all the honest parties aborting. Then, Acpa outputs the pair (i, j) that
is output by A.

It is clear from the simulation that the view of A is computationally indistinguishable to that of a real
protocol execution within ExptShufflet,nA,π(k) (the only difference is due to the simulated proof of knowledge).
Furthermore, whenever the verification fails, Acpa succeeds with the same probability as A. We therefore
have:

Pr[Exptpermute
Acpa,E,cpa = 1] ≥ Pr[Exptpermute

Acpa,E,cpa = 1 ∧ AllVerify = 0]

= Pr[ExptShufflet,nA,π(k) = 1 ∧ AllVerify = 0]

=
1

n− t
+ ϵ(k).

From the security of Exptpermute
A,E,cpa we conclude that ϵ must be negligible. This completes the proof of the

claim.

We complete the proof of security by proving Eq. (3).

Claim 10 Assume that E is a CCA2 secure encryption scheme. Then, for every probabilistic polynomial-
time adversary A′ there exists a negligible function negl such that

Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0] ≤ 1

n− t
+ negl(k)

Proof: Let A′ be an adversary for ExptShufflet,nA,π(k) and let ϵ(k) be a function such that

Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0] =
1

n− t
+ ϵ(k).

We show that ϵ is a negligible function, by constructing an adversary A for Exptpermute
A,E,cca that succeeds also

with probability 1/(n− t) + ϵ(k).

12

The adversary A: Upon input security parameter 1k and a public key pk for the CCA2-secure encryption
scheme, A (who is also given oracle access to Decsk(·)) works as follows:

1. A receives from A′ a set of t indices I ⊂ [n] to indicate which parties are corrupted, and a set of
distinct inputs w1, . . . , wn−t

2. A picks a random ℓ ̸ I; let pkℓ = pk.

3. A picks n− t random αj ∈ Z∗
q , and n− t−1 key pairs (skj , pkj) for E . These are the keys of the honest

parties.

4. A gives A′ the public keys of the honest parties {hj = gαj , pkj}n−t
j=1 along with a proof of knowledge of

the value αj for every j.

5. A receives t pairs of public keys (hi, pki) for El Gamal and for E , along with a proof of knowledge of
the exponents αi.

6. A encrypts w1, . . . , wn−t as follows:

(a) A first encrypts each wi using the threshold ElGamal

(b) A encrypts m1, . . . ,mn−t with n − ℓ layers of encryption (starting from pkn and working back-
words) using E , and obtains cℓ+1

1 , . . . , cℓ+1
n−t

(c) A gives cℓ+1
1 , . . . , cℓ+1

n−t to Exptpermute
A,E,cca and receives back cℓπ(1), . . . , c

ℓ
π(n−t)

(d) A continues to encrypt cℓπ(1), . . . , c
ℓ
π(n−t) using E for layers ℓ− 1 to 1 and obtains c1, . . . , cn−t.

7. A executes the private shuffle protocols as follows:

(a) For every round j between 1 and ℓ− 1:

• If it is an honest user’s round, A permutes and decrypts one layer of the outer encryption.

• If it is an corrupted party’s round, A gives the vector to A′ and receives a new vector.

(b) In the ℓth round, A first checks if missing = 1. If yes, it just aborts. Otherwise, A “decrypts” the
honest party’s ciphertexts. We stress that it cannot actually decrypt them since it doesn’t know
skℓ. However, since it knows the mapping of cℓ+1

1 , . . . , cℓ+1
n−t to cℓπ(1), . . . , c

ℓ
π(n−t) (albeit after a

random permutation), it can just use cℓπ(1), . . . , c
ℓ
π(n−t) as the decrypted values.3 The remaining

ciphertexts (generated by the adversary) are given to the decryption oracle (unless there are
ciphertexts copied from the honest, in which case the honest party aborts in the protocol and
thus so does A, outputting whatever pair A′ outputs). A then permutes the entire vector of
decrypted ciphertexts. (Note that cℓπ(1), . . . , c

ℓ
π(n−t) are not in the same order as cℓ+1

1 , . . . , cℓ+1
n−t.

However, since the honest party permutes the result anyway, this makes no difference.

(c) For every round j between ℓ+ 1 and n, A decrypts exactly as in rounds j between 1 and ℓ− 1.

8. A completes the verification stage exactly like the honest parties (it can do this since it knows all of
the αj values of the honest parties).

9. A′ outputs the pair (i, j) that is output by A.

3Here it is crucial that none of the ciphertexts is missing. Otherwise, A cannot know which of the ciphertexts should be
included and which not. In order to see this, note that A knows all of cℓ+1

1 , . . . , cℓ+1
n−t and cℓ

π(1)
, . . . , cℓ

π(n−t)
, but does not know

which ciphertext is mapped to which. Thus, if cℓ+1
1 is missing, then A cannot know which of the cℓj values to remove. This is

because A does not know the permutation π.

13

A does not know the order of the messages in the ℓth round, but it does not need to since it only needs
to give a random permutation to the next party. Here A uses both its knowledge of how the ciphertexts of
the honest parties looked prior to applying the ℓth encryption along with the answers it received from the
decryption oracle for the ciphertexts of the remaining parties. After applying a random permutation to all
we obtain a view that is identical to that of A′ in a real execution in which the ℓth party really decrypts
and permutes these messages. Thus, A succeeds in its guess with exactly the same probability as A′. We
conclude:

Pr
[
Exptpermute

A,E,cca = 1
]

≥ Pr
[
Exptpermute

A,E,cca = 1 ∧missing = 0
]

= Pr[ExptShufflet,nA,π(k) = 1 ∧ missing = 0]

=
1

n− t
+ ϵ(k)

and so from the security of Exptpermute
A,E,cca, ϵ must be negligible.

This completes the proof of the theorem.

5 Private Web Search

In this section we show how to use a private shuffle in order to achieve private web search. As we will show
below, a system for private web search needs to take into account additional considerations that are not
covered by the notion of a private shuffle (or even a fully secure mix-net). In this section we address these
considerations, describe the assumptions that we make, and present a general scheme that models real-world
threats and is thus implementable in practice.

5.1 Background

As in [2], the basic idea of the scheme is to allow many users who wish to submit a web query to team up
in a group, shuffle their queries in a private manner and then have each of them perform one of the queries
without knowing who it belongs to. Upon receiving back the query results, each party just sends them to
all others in the group so that the original party who sent the query can learn the result. This methodology
prevents the search engine from linking between a user and its search query. Furthermore, the users in the
group do not know on whose behalf they send a query; all they know is that it belongs to someone within
the group. An important question in such a system is how to group users together. One possibility is to do
this in a peer-to-peer way, so that whenever a user has a query it can notify the peer network in order to
find out who else has a query at this time. The parties with queries can then join in an ad-hoc way in order
to privately shuffle them before sending them to the search engine. (Note that parties who are currently idle
can help by sending dummy queries, if they like.) This is a feasible model, but has significant implementation
difficulties. The alternative suggested by [2], and one that we follow for the remainder of this section, is to
use a central server whom anyone interested in searching can approach. The server then notifies the parties
wishing to currently search of each others’ identities so that they can form a group in order to carry out a
private shuffle. This model is easily implemented by simply having the server be a website offering a “private
search” utility.

As we mentioned in the introduction, the problem with the scheme suggested by [2] was that it assumed
that all parties are semi-honest. In our view this is highly unrealistic, especially since a single corrupt party
can completely break the privacy of the scheme and learn every party’s search query. We now show how to
achieve private web search in the presence of malicious adversaries. In order to do this, we use the private
shuffle protocol presented in Section 3 that maintains privacy in the presence of malicious adversaries. We
stress that private shuffle within itself does not suffice for obtaining private web search in practice for the
following reasons:

14

1. A malicious central server can choose the group so that it controls all but one user. As we explain
below, this completely bypasses the security guarantees of the shuffle.

2. The result of the web search queries must be sent to all parties because we don’t know which user sent
which query. This means that users learn the search results for all the members in their group, which
is much more information than necessary (although the search engine must learn all queries, this is not
the case for users).

Below, we will present a system for web search that uses the private shuffle protocol, while addressing the
above concerns.

5.2 A Private Web Search System

Our solution is comprised of four phases that together enable private web search:

• Phase 0: Installation and initialization

• Phase 1: Ad-hoc group setup

• Phase 2: Private shuffle of the search queries

• Phase 3: Query submission and private response retrieval

We remark that an ad-hoc group can be used for many searches, and ideally would be used for a session of
a reasonable amount of time. This enables us to reduce the overhead due to running phase 1.

5.2.1 Phase 0 – installation and initialization:

Our private shuffle protocol requires a PKI and communication with a central server. A natural realization
of this would be as an Add-on to a web browser that would supply a functionality which is similar to the
search window in the most common web browsers. This Add-on would contain the address of a central server
(or a list of servers). Regarding the PKI, since most users do not have a certificate for digital signatures,
we have to generate one. The most practical way to do this would be to use a one-time activation of the
Add-on after installation, in which a key pair is generated and a digital certificate then downloaded from a
CA. Recall that without a PKI, the efficient verification in our private shuffle protocol does not guarantee
that it was the honest parties in the group that sent true in the verification of the shuffle stage. We stress
that a different certificate can be installed on every machine using the Add-on.

5.2.2 Phase 1 – ad-hoc group setup:

As mentioned above, users group together with the help of a server S that aggregates the identities of users
that wish to currently engage in private web search. Conceptually speaking, in terms of role and trust, the
server should be no more than a bulletin board for anonymous users who wish to create an ad-hoc group.
In [2], the server was assumed to be a trusted entity who does not collude with any of the users nor with
the web search engines. However, the role of grouping users together carries with it a lot of power that can
easily be abused. Specifically, consider a server that has t ≥ n machines at its disposal (or even a single
machine that can pretend to be t different users), where n is the size of the group. Then, the server can
always group some single honest user with n− 1 of the t server-owned users. If an honest user runs a private
shuffle in this way, then its privacy is completely lost because the server knows the search queries of all the
users except for the honest one. Thus, at the end of the protocol when all queries are revealed, the server
knows the exact query made by the honest user. We stress that this holds even if the mix carried out is
perfectly secure.

In order to prevent the server from grouping the users as it wishes, we have all parties run a type of
joint coin tossing protocol so that the t parties controlled by a malicious server are uniformly distributed
within all the groups running the shuffle. Let N denote the overall number of parties in the system, let t
denote the overall number of parties under the control of the malicious server, and let n be the size of each

15

group running the shuffle. Our coin-tossing protocol uses two random oracles H1 and H2. Each party Pi

sends H1(IPi, PKi, ri) to the server to be posted (where ri is a long random string). Then, the groups are
formed by applying H2 to all the values H1(IP1, PK1, r1), . . . ,H1(IPN , PKN , rN). Denote the output of H2

by o = (o1, . . . , oN) where each oi is of length logN . Letting oi be the temporary name of party Pi, we have
that the output of H2 induces an order on the parties by taking the lexicographic ordering of the temporary
names. Using this order the users are grouped into groups of size n. Observe that the server can choose the
rj values in H1(IPj , PKj , rj) after it received all of the honest parties’ H1 values (where Pj is a party under
its control). Furthermore, it can do so many times in an attempt to obtain a “bad group” in which all but
one party are under its control We therefore need to make sure that the probability that a group is “bad”
is very small (e.g., 10−40). This will ensure that the server, after seeing the inputs from the honest users,
still cannot find input values that would create a “bad group” in sufficient time. The reason that we use the
random oracle H1 in the process of sending the inputs, instead of just having the parties send (IPi, PKi, ri)
is in order to protect the identities of the users. Specifically, the server S will send the relevant IP addresses
only to the relevant group, and so only the server S providing the service knows the history of which party
participated in each group. As we will see below, it is important to prevent this information from being
leaked, especially to the web search engine. Otherwise, statistical attacks can be carried out; see below for
more details. The group setup appears in Protocol 11.

Protocol 11 (Group setup protocol)

Let H1 and H2 be two random oracles where H1 : {0, 1}∗ → {0, 1}k and H2 : {0, 1}∗ → {0, 1}N·logN .
Let n be the size of each group for the shuffle. We set the initial indexing of the parties according to the
lexicographical order of their IP addresses.

1. Each Pi chooses a random ri and sends H1(IPi, PKi, ri) to the center.

2. After a short predefined time everyone queries the center for the list of parties who have registered.

3. Each party computes o = H2(H1(IP1, PK1, r1), . . . , H1(IPN , PKN , rN)) and divides the result o
into chunks of size log N , denoted o1, . . . , oN . Party Pi is associated with oi and the list is sorted
according to the oi values.

4. Grouping is carried out by taking groups of n parties according to the sorting. That is, for i =
1, . . . , ⌊N/n⌋, the ith group Gi is set to be the parties associated with the values (on·(i−1)+1, . . . , on·i).

5. The center sends the IP addresses of the group members to the members of each group (i.e. each
member gets only the IP addresses of the members in its group).

6. Members of each group send each other their IP address, public key and randomness that were used
when registering with the center.

7. Each group member computes H1(IPj , PKj , rj) for every party Pj in its group and verifies that it
matches what was recorded by the center during registration. In addition, it verifies that it received
the IP address of all parties that are in its group, by the computation of H2. If no, then it sends
abort to all the parties in its group.

We now analyze the security of Protocol 11. Recall that in the random oracle model, the output of H2

is uniformly distributed every time that it is applied to a new value. We begin by analyzing the probability
that a bad grouping occurs for a given set of values {(IPi, PKi, ri)}Ni=1. (Below we will analyze what this
means when the server is malicious.) We call a group “bad” if it consists of n− 1 malicious parties together
with a single honest party. Clearly, this is bad because the server S then learns the search query of that
party. The cases that a group has only a few honest parties is also quite bad, but there is still ambiguity
regarding each user’s search term. Furthermore, in Section 5.3 we discuss how to further improve this.

Let badi denote the event that the ith group is bad as defined above. We begin by computing the
probability that the first group is bad; i.e., that bad1 occurs. Since the output of H2 is uniformly distributed,
we can compute this by counting the number of ways to choose n − 1 parties out of t malicious ones times
the number of ways to choose a single honest party, divided by the total number of ways to choose a group

16

of size n out of N parties. That is, we have:

Pr [bad1] =

(
N−t
1

)
·
(

t
n−1

)(
N
n

) =
(N − t) · t!

(t−n+1)!(n−1)!

N !
(N−n)!n!

=

∏n−2
i=1 (t− i)∏n−1
j=1 (N − j)

· (N − t) · n

=
n−2∏
i=1

(t− i)

(N − i)
· N − t

N − n+ 1
· n

Noting again that H2 is a random function, it follows that the above calculation is true for any fixed group.
Thus, the above gives the probability of badi for every i = 1, . . . , ⌊N/n⌋. As we have mentioned, a grouping
is bad if there exists a bad group. Thus, applying the union bound over all ⌊N/n⌋ groups we have that:

Pr [∃ i : badi] ≤
N/n∑
i=1

Pr [badi] =
N

n
Pr [bad1] =

n−2∏
i=1

(t− i)

(N − i)
· N − t

N − n+ 1
·N

Assuming now thatN >> t, we have that Pr [∃ i s.t. badi] is approximately (t
N)n−2 ·N . Concretely, consider

the case of millions of users running this protocol, a malicious server S that controls a few thousand of them,
and a group size of about 20. In this case, we have that the probability that there exists a bad group for a

given set of H1 values is smaller than 106 · (10
3

106)
18, which is 10−48.

We stress that the above analysis alone is not sufficient. This is due to the fact that, as we have mentioned,
it is possible for a malicious server S to modify the H1 values many times in the aim of obtaining a bad
grouping. Specifically, once all honest parties have submitted their values, the server can repeatedly modify
the rj portion of party Pj ’s input to H1, where Pj is a malicious user under its control. Since any change
to any of the H1 values results in a completely different ordering of the parties (because H2 is a random
function), we have that the probability of a bad grouping is T times the above, where T equals the number
of hashes that the server can compute in the required time interval. With the above example parameters
where the probability of a bad grouping is 10−48, the probability that a malicious server achieves a bad
grouping within seconds is very small.

5.2.3 Phase 2 – private shuffle of the search queries:

Once the users have been grouped together, they run the private shuffle protocol of Section 3. However, as
we discussed earlier in Section 5.1 (item 2 at the end of the section), we would like to prevent the group
members from learning all the search results. This seems problematic because the parties do not know
whose query they have and they must therefore broadcast the result to everyone. We overcome this problem
by instructing each party to first choose a random symmetric encryption key kj and then input the pair
wkj = (wj , kj) to the shuffle. As we will see next, kj will be used to encrypt the search result.

5.2.4 Phase 3 – query submission and private response retrieval:

After the shuffle protocol is completed, each party holds a pair (w′, k′). Each party then submits the search
query w′ to the search engine and receives back the result. The search result along with the original search
term is then encrypted using the key k′ with a symmetric encryption scheme (e.g., AES) and broadcast to
all group members. Each party attempts to decrypt all search results; the one that decrypts correctly is its
own result. In this way, each party only learns its own result and the result of one other random user. Thus,
privacy of the queries is better preserved.

5.3 Additional Considerations

We now address some of the issues that concern deployment of our scheme in the real world and discuss the
privacy that it provides.

17

5.3.1 Blending into a crowd:

The main idea of our scheme is blending into a crowd. The fact that millions of people from all over the
world can participate in the protocol provides a strong sense of privacy, but consideration should be given
to the way different populations are grouped together. If 20 people from all over the world are grouped
together and all submit the query in their native language, then it is easy to learn the query of each party
based on the geographic location of its IP address. When deploying such a system, consideration should
be given to these issues and blending into a crowd should actually be blending into a crowd of people with
similar characteristics.

5.3.2 The size of a group:

Our private shuffle protocol provides anonymity with respect to the size of the group; thus the bigger the
group the more anonymity one enjoys. Since the size of the group affects both the number of modular
operations each party needs to perform and the number of rounds in the private shuffle protocol, the
size of the group is bounded by the computing power of the users’ computers and the acceptable latency.
Nevertheless, it is possible to hide in a larger group at the expense of more modular exponentiations but
without increasing the number of rounds, as follows. As we have described in remark 3 after Protocol 4, if
we can assume that the number of malicious parties within a group is some t′ < n, then it suffices to run the
shuffle stage for t′ + 1 rounds. Performing a similar analysis to the one above, we have that the probability
of having 19 malicious parties within a group of size 50 is actually very close to the probability of having
19 malicious parties within a group of size 20 (when the total number of parties is about a million and the
total number of malicious parties is several thousand). Thus, if one can afford the additional number of
modular exponentiations that comes with increasing the group size, we can enhance privacy significantly by
increasing the size of the group, without paying much more in latency. Observe that in this calculation a
group is “bad” if there are t′ + 1 malicious parties. Thus, if a group is not bad, each honest party’s search
query is guaranteed to be hidden amongst n− t′ other search queries.

5.3.3 Lifetime of a group:

Our scheme creates ad-hoc groups that can be changed over time. In terms of efficiency, it is easy to see that
remaining within a group for a while saves the cost of running the group selection process. However, users
may submit a query to the search engine and logout. In this case the group size would shrink and if it is too
small then privacy is compromised. This can be dealt with by starting with a larger group and regrouping
once the group becomes too small.

5.3.4 Statistical analysis and changing groups:

In terms of privacy, it may seem that the more often people change groups, the more privacy they gain.
However, this actually may not always be the case. Consider a central server that colludes with the web
search engine. The server S and search engine can then run a statistical analysis to group together queries
that are likely to belong to the same user (e.g., by grouping together very low-probability queries). Now,
if these queries are carried out in different groups, then the server S can find the (most likely) unique IP
address that appears in all of the different groups, and conclude that the queries originated from this address.
Thus, changing groups can be problematic. (Of course, without such collusion, this problem does not arise.)

5.3.5 An additional privacy enhancement:

The system presented above has the property that each user’s search query is revealed to one other random
group member. However, in some cases a user may prefer to be able to say which user will submit and
therefore learn their query (and which users will not learn their query). We can extend our system for
private web search to allow this by adding one more layer of encryption to the messages, using the public
key of the designated party. Specifically, if a party Pj wishes to have party Pi be the one who submits its

18

query, then it encrypts wkj along with some redundancy (to verify the correctness when opening) using gαi .
Then Pj executes the private shuffle protocol with the encrypted wkj . After the messages are shuffled, each
party sends the message it received to everyone else, and all parties decrypt the results. In this way, only
the designated party Pi is the one that can learn wkj and it will send the query.

Acknowledgements

We would like to thank Gilad Asharov and Meital Levy for many helpful discussions, and the anonymous
referees for helpful comments. A special thanks to Ian Goldberg for pointing out a serious error in the
protocol appearing in the extended abstract of this work [13].

References

[1] M. Bellare and P. Rogaway Entity Authentication and Key Distribution. In CRYPTO93, Springer-
Verlag (LNCS 773), pages 232-249, 1994.

[2] J. Castellà-Roca, A. Viejo and J. Herrera-Joancomarti Preserving User’s Privacy in Web Search
Engines. In Computer Communications, 32(13-14):1541–1551, 2009.

[3] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communica-
tions of the ACM, 24(2):84–88, 1981.

[4] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private Information Retrieval. Journal of the
ACM, 45(6):965–981, 1998.

[5] B. Chor and M. Rabin. Achieving Independence in Logarithmic Number of Rounds. In the 6th
PODC, pages 260–268, 1987.

[6] R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Secure Against Adaptive Chosen
Ciphertext Attacks. In CRYPTO98, Springer (LNCS 1462), pages 13-25, 1998.

[7] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai. Robust Non-interactive Zero-
Knowledge. In CRYPTO 2001, Springer-Verlag (LNCS 2139), pages 566–598, 2001.

[8] Y. Desmedt and K. Kurosawa. How to Break a Practical MIX and Design a New One. In EURO-
CRYPT 2000, Springer-Verlag (LNCS 1807), pages 557–572, 2000.

[9] R. Dingledine, N. Mathewson and P. Syverson. Tor: The Second-Generation Onion Router. In Pro-
ceedings of the 13th USENIX Security Symposium, pages 303–320, 2004.

[10] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In
CRYPTO’84, Springer-Verlag (LNCS 196), 1984.

[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In CRYPTO’86, Springer-Verlag (LNCS 263), pages 186–194, 1986.

[12] M. Jakobsson. A Practical MIX. In EUROCRYPT’98, Springer-Verlag (LNCS 1403), pages 448–461,
1998.

[13] Y. Lindell, E. Waisbard. Private Web Search with Malicious Adversaries. Privacy Enhancing Tech-
nologies, pages 220–235, 2010.

[14] R. Ostrovsky and W.E. Skeith. A Survey of Single-Database PIR: Techniques and Applications. In
the 10th PKC, Springer-Verlag (LNCS 4450), pages 393–411, 2007.

[15] C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO’89, Springer-
Verlag (LNCS 435), pages 239–252, 1989.

19

A Efficient NIZK Proof of Knowledge of Discrete Log

The users in Protocol 4 need to prove knowledge of αi in an efficient manner. Furthermore, it is crucial
that these proofs be “independent” (technically, this means that it is possible to simultaneously simulate
the proofs of the honest parties and extract the witnesses αi of the corrupt parties). This can be achieved
using the method of [5], but this requires interaction. In the random oracle model, a very fast alternative is
to use the Fiat-Shamir heuristic [11] applied to the discrete log protocol of Schnorr [15]. This is standard,
but we repeat it below for the sake of completeness. Observe also that the user’s ID is included in the hash
for generating the “verifier query” in order to ensure independence and that no party copies another party’s
proof. Let H be a hash function (modeled as a random oracle). The proof system appears in Protocol 12.

Protocol 12 (NIZK Proof of Knowledge of the Discrete Log of y = gx)

• Prover’s instructions:

1. Choose a random r ∈ Z∗
q and compute t = gr

2. Compute c = H(ID∥t) (where ∥ denotes concatenation and ID is the prover’s unique identifier
of known length)

3. Compute s = r + cx

4. Output (ID, gx, t, c, s).

• Verifier’s instructions: Upon receiving (ID, y, t, c, s), accept if and only if c = H(ID∥t) and gs = t·yc

The fact that Protocol 12 constitutes a zero-knowledge proof of knowledge (with independence) is well
known.

20

