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ABSTRACT

We study subgroups of ZN which possess group theoretic properties anal-

ogous to properties introduced by Menger (1924), Hurewicz (1925), Roth-

berger (1938), and Scheepers (1996). The studied properties were intro-

duced independently by Kočinac and Okunev. We obtain purely com-

binatorial characterizations of these properties, and combine them with

other techniques to solve several questions of Babinkostova, Kočinac, and

Scheepers.
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1. Introduction

The groups Z
k, k ∈ N, are discrete, and the classification up to isomorphism

of their (topological) subgroups is trivial. But even for the countably infinite

power Z
N of Z, the situation is different. Here the product topology is nontrivial,

and the subgroups of Z
N make a rich source of examples of non-isomorphic

topological groups (see the papers in [10], and references therein). Because of

the early works of Baer [3] and Specker [33], the group Z
N is commonly known

as the Baer–Specker group.

We study the properties of subgroups of the Baer–Specker group, which are

preserved under continuous group homomorphisms. While the definitions of

these properties contain a topological ingredient, they all turn out to be equiv-

alent to purely combinatorial properties. One of these properties is of special

interest in light of classical conjectures of Menger and Hurewicz.

This paper is organized as follows. In Section 2, we define the studied group

theoretic properties. These definitions, due to Okunev and Kočinac, indepen-

dently, involve coverings of the group by translates of open sets. In Section

3, we provide combinatorial characterizations for these properties. In Section

4, we discuss the Hurewicz Conjecture for groups, in light of a recent result of

Babinkostova. In Section 5, we generalize the properties for arbitrary sets, prove

their preservation under uniformly continuous images, and give a characteriza-

tion of each of the general topological properties in terms of the group theoretic

ones. In Section 6, we describe the minimal cardinalities of counter-examples for

the group theoretic properties. Section 7 shows that the group theoretic prop-

erties do not coincide, and Section 8 shows that none of the group theoretic

properties coincides with its general topological counterpart, answering several

questions of Babinkostova, Kočinac and Scheepers posed in [2]. In Section 9,

we give a systematic list of constructions witnessing the diversity of subgroups

of the Baer–Specker group. An informal thesis that emerges from that section

is that Z
N is “universal” for boundedness properties of groups.

2. Boundedness notions for groups

Definition 2.1: Assume that (G, ·) is a topological group.

(1) G is Menger-bounded if for each sequence {Un}n∈N of neighborhoods
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of the unit, there exist finite sets Fn ⊆ G, n ∈ N, such that G =
⋃

n Fn · Un.1

(2) G is Scheepers-bounded if for each sequence {Un}n∈N of neighbor-

hoods of the unit, there exist finite sets Fn ⊆ G, n ∈ N, such that for

each finite set F ⊆ G, there is n such that F ⊆ Fn · Un.

(3) G is Hurewicz-bounded if for each sequence {Un}n∈N of neighbor-

hoods of the unit, there exist finite sets Fn ⊆ G, n ∈ N, such that for

each g ∈ G, g ∈ Fn · Un for all but finitely many n.

(4) G is Rothberger-bounded if for each sequence {Un}n∈N of neigh-

borhoods of the unit, there exist elements an ∈ G, n ∈ N, such that

G =
⋃

n an · Un.

Several instances of these properties were studied in, e.g., [34, 15, 16, 22, 5, 36].

A study from a more general point of view was initiated in [20, 2, 1]. These

properties are obtained from the following general topological properties by

restricting attention to open covers of the form {a · U : a ∈ G}, where U is an

open neighborhood of the unit.

Definition 2.2: Assume that X is a topological space.

(1) X has the Menger property [24] if for each sequence {Un}n∈N of open

covers of X , there exist finite sets Fn ⊆ Un, n ∈ N, such that
⋃

n∈N
Fn

is a cover of X .

(2) X has the Scheepers property [31] if for each sequence {Un}n∈N of

open covers of X , there exist finite sets Fn ⊆ Un, n ∈ N, such that for

each finite set F ⊆ X , there is n such that F ⊆
⋃

U∈Fn

U .

(3) X has the Hurewicz property [17, 18] if for each sequence {Un}n∈N

of open covers of X , there exist finite set Fn ⊆ Un, n ∈ N, such that

for each element x ∈ X , x ∈
⋃

U∈Fn

U for all but finitely many n.

(4) X has the Rothberger property [29] if for each sequence {Un}n∈N

of open covers of X , there exist elements Un ∈ Un, n ∈ N, such that

X =
⋃

n∈N
Un.

Except for the second, all these properties are classical. They share the same

structure and can be defined in a unified manner [31, 19]. These properties were

analyzed in many papers and form an active area of mathematical research –

see [32, 21, 37, 6] and references therein.

1 Throughout, A · B stands for {a · b : a ∈ A, b ∈ B}, and a · B stands for {a · b : b ∈ B}.
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The group theoretic properties are the main object of study in this paper, but

we also consider their relation to the general topological properties. Clearly, the

group theoretic properties are related as follows:

Hurewicz-bounded // Scheepers-bounded // Menger-bounded

Rothberger-bounded

OO

In addition, they are all hereditary for subgroups and preserved under contin-

uous homomorphisms [15, 2, 1]. All properties in the top row hold for σ-compact

groups, and therefore for subgroups of σ-compact groups. In particular, all

properties in the top row hold for subgroups of the Cantor group Z
N

2 . As we

shall see, the situation is quite different in the case of the Baer–Specker group

Z
N.

3. Purely combinatorial characterizations and some consequences

We use the convention that 0 ∈ N. For the sake of clarity, we use the following

self-evident notation. N
↑N is the collection of all strictly increasing elements of

N
N and Z

<ℵ0 is the collection of all finite sequences of integers. The canonical

basis for the topology of Z
N consists of the sets

[ s ] = {f ∈ Z
N : s ⊆ f}

where s ranges over Z
<ℵ0 . [k, m) = {k, k + 1, . . . , m − 1} and [k,∞) =

{k, k + 1, . . . }, for natural numbers k < m. For a partial function f : N → Z,

|f | is the function with the same domain, which satisfies |f |(n) = |f(n)|, in

this case | · | denotes the absolute value. For partial functions f, g : N → Z,

f ≤ g means: For each n in the domain of f , n is also in the domain of g, and

f(n) ≤ g(n). Similarly, f ≤ k means: For each n in the domain of f , f(n) ≤ k.

The quantifiers (∃∞n) and (∀∞n) stand for “there exist infinitely many n” and

“for all but finitely many n”, respectively. Finally, the identity element of Z
N,

the constantly zero sequence, is also denoted by 0.

3.1. Menger-bounded groups.

Theorem 3.1: Assume that G is a subgroup of Z
N. The following conditions

are equivalent:

(1) G is Menger-bounded;
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(2) for each h ∈ N
↑N, there is f ∈ N

N such that:

(∀g ∈ G)(∃n) |g| � [0, h(n)) ≤ f(n);

(3) for each h ∈ N
↑N, there is f ∈ N

N such that:

(∀g ∈ G)(∃∞n) |g| � [0, h(n)) ≤ f(n);

(4) there is f ∈ N
N such that:

(∀g ∈ G)(∃∞n) |g| � [0, n) ≤ f(n).

Proof. (1 ⇒ 2) Fix h ∈ N
↑N. For each n, take Un = [ 0 � [0, h(n)) ] and find

finite Fn ⊆ G such that G ⊆
⋃

n(Fn + Un). Define f ∈ N
N by

f(n) = max{|a(k)| : a ∈ Fn and k < h(n)},

for each n. For each g ∈ G there are n and a ∈ Fn such that g ∈ a + Un =

[ a � [0, h(n)) ], that is, g � [0, h(n)) = a � [0, h(n)). Thus, |g| � [0, h(n)) =

|a| � [0, h(n)) ≤ f(n) for this n.

(2 ⇒ 1) Assume that {Un}n∈N is a sequence of neighborhoods of 0 in Z
N.

Take h ∈ N
↑N such that [ 0 � [0, h(n)) ] ⊆ Un for each n. Apply (2) on h to

obtain f . For each n and each s ∈ Z
[0,h(n)) with |s| ≤ f , choose, if possible,

as ∈ G such that as � [0, h(n)) = s. If this is impossible, take as = 0. Let

Fn = {as : s ∈ Z
[0,h(n)), |s| ≤ f}. We claim that G ⊆

⋃

n(Fn + Un). For

each g ∈ G, there is n such that |g| � [0, h(n)) ≤ f(n), and therefore there is

s ∈ Z
[0,h(n)) such that g � [0, h(n)) = s = as � [0, h(n)), thus

g ∈ [ as � [0, h(n)) ] = as + [ 0 � [0, h(n)) ] ⊆ as + Un ⊆ Fn + Un.

(2 ⇒ 3) This is achieved by partitioning N to infinitely many infinite pieces

and applying the arguments in (1 ⇒ 2) to each piece separately.

(3 ⇒ 2) and (3 ⇒ 4) are trivial.

(4 ⇒ 3) This was pointed out by Banakh and Zdomskyy, and later indepen-

dently by Simon. Indeed, fix any h ∈ N
↑N. Let f be as in (4). We may assume

that f is increasing. Define f̃(n) = f(h(n + 1)) for each n. Fix g ∈ G. For each

n > h(0) with |g| � [0, n) ≤ f(n), let m be such that n ∈ [h(m), h(m+1)). Then

|g| � [0, h(m)) ≤ |g| � [0, n) ≤ f(n) ≤ f(h(m + 1)) = f̃(m). There are infinitely

many such n’s, and therefore infinitely many such m’s.
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3.2. Scheepers-bounded groups.

Theorem 3.2: Assume that G is a subgroup of Z
N. The following conditions

are equivalent:

(1) G is Scheepers-bounded;

(2) for each h ∈ N
↑N, there is f ∈ N

N such that:

(∀finite F ⊆ G)(∃n)(∀g ∈ F ) |g| � [0, h(n)) ≤ f(n);

(3) for each h ∈ N
↑N, there is f ∈ N

N such that:

(∀finite F ⊆ G)(∃n)(∀g ∈ F ) g � [0, h(n)) ≤ f(n);

(4) there is f ∈ N
N such that:

(∀finite F ⊆ G)(∃∞n)(∀g ∈ F ) |g| � [0, n) ≤ f(n);

(5) there is f ∈ N
N such that:

(∀finite F ⊆ G)(∃∞n)(∀g ∈ F ) g � [0, n) ≤ f(n);

Moreover, in (2) and (3) the quantifier (∃n) can be replaced by (∃∞n).

Proof. (3 ⇒ 2) Given a finite F ⊆ G, apply (3) to the finite set F ∪ −F =

{±a : a ∈ F}.

(5 ⇒ 4) is identical. The remaining implications are proved as in Theorem

3.1.

3.3. Hurewicz-bounded groups.

Definition 3.3: A partial ordering ≤∗ is defined on N
N by: f ≤∗ g if f(n) ≤ g(n)

for all but finitely many n. A subset X of Z
N is ≤∗-bounded if there is f ∈ N

N

such that for each g ∈ X , |g| ≤∗ f .

Theorem 3.4: Assume that G is a subgroup of Z
N. The following conditions

are equivalent:

(1) G is Hurewicz-bounded;

(2) for each h ∈ N
↑N, there is f ∈ N

N such that:

(∀g ∈ G)(∀∞n) |g| � [0, h(n)) ≤ f(n);

(3) G is ≤∗-bounded.
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Proof. (1 ⇔ 2) this is similar to the proof of Theorem 3.1.

(2 ⇒ 3) is trivial.

(3 ⇒ 2) Assume that f0 ∈ N
N witnesses that G is ≤∗-bounded. We may

assume that f0 is increasing. For each g ∈ G let n0 be such that |g| � [n0,∞) ≤

f0, and let m = max |g| � [0, n0). Choose n1 > n0 such that m ≤ f0(n1). Then

for each n ≥ n1, we have the following:

|g| � [0, n0) ≤ m ≤ f0(n1) ≤ f0(n)

|g| � [n0, n) ≤ f0 � [n0, n) ≤ f0(n)

In other words, |g| � [0, n) ≤ f0(n) for each n ≥ n1. Given h ∈ N
↑N, define

f ∈ N
N by f(n) = f0(h(n)) for each n. For each n large enough, |g| � [0, h(n)) ≤

f0(h(n)) = f(n).

Item (3) in Theorem 3.4 is familiar to algebraists under the name bounded

growth type (see [33, 14]), and to topologists as “subsets of a σ-compact set.”

3.4. Rothberger-bounded groups and strong measure zero. Accord-

ing to Borel [11], a metric space (X, d) has strong measure zero if for each

sequence {εn}n∈N of positive reals, there exists a cover {Un : n ∈ N} of X such

that for each n, the diameter of Un is smaller than εn. The topology on the

Baer–Specker group Z
N is induced by the metric

d(x, y) =







1
N(x,y)+1 x 6= y

0 x = y

where for distinct x, y ∈ Z
N, N(x, y) = min{n : x(n) 6= y(n)}.

The equivalence (2 ⇔ 3) in the following theorem (with Z
N

2 instead of Z
N)

is from Bartoszyński–Judah [7], and the equivalence (1 ⇔ 3) follows from a

general result of Babinkostova, Kočinac, and Scheepers [2].

Theorem 3.5 ([7, 2]): Assume that G is a subgroup of Z
N. The following

conditions are equivalent:

(1) G is Rothberger-bounded;

(2) for each h ∈ N
↑N, there is ϕ : N → Z

<ℵ0 such that:

(∀g ∈ G)(∃n) g � [0, h(n)) = ϕ(n);

(3) G has strong measure zero.

Moreover, in (2), the quantifier (∃n) can be replaced by (∃∞n).
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Proof. (1 ⇒ 2) Fix h ∈ N
↑N. For each n, take Un = [ 0 � [0, h(n)) ] and find

an ∈ G such that G ⊆
⋃

n(an + Un). For each g ∈ G there exists n such that

g ∈ an + Un = [ an � [0, h(n)) ], that is, g � [0, h(n)) = an � [0, h(n)). Take

ϕ(n) = an � [0, h(n)), for each n.

(2 ⇒ 1) Assume that {Un}n∈N is a sequence of neighborhoods of 0 in Z
N.

Take h ∈ N
↑N such that [ 0 � [0, h(n)) ] ⊆ Un for each n. Apply (2) on h to

obtain ϕ. For each n choose, if possible, an ∈ G such that an � [0, h(n)) = ϕ(n).

If this is impossible, take an = 0. We claim that G ⊆
⋃

n(an + Un). Indeed,

for each g ∈ G, exists n such that g � [0, h(n)) = ϕ(n) = an � [0, h(n)), and

therefore

g ∈ [ an � [0, h(n)) ] = an + [ 0 � [0, h(n)) ] ⊆ an + Un.

(1 ⇒ 3) Given {εn}n∈N, choose for each n a neighborhood of the identity

whose diameter is smaller than εn. Apply (1) and the fact that the metric on

Z
N is translation invariant.

(3 ⇒ 2) Let h ∈ N
↑N. For each n, take εn = 1/h(n). By (3), there is a cover

{Un : n ∈ N} of G such that for each n, the diameter of Un is smaller than

εn. Consequently, each Un is contained in some [ sn ] where sn ∈ Z
h(n). Take

ϕ(n) = sn for each n.

The last assertion can be proved as in Theorem 3.1.

4. The Hurewicz and Menger Conjectures revisited

The notion of Menger-bounded groups was introduced by Okunev (under the

name o-bounded groups) in the aim of having an inner characterization

of subgroups of σ-compact groups. In the general topological case, this ap-

proach goes back to Menger [24], who conjectured that for metric spaces, the

Menger property (Definition 2.2(1)) characterizes σ-compactness. Following

that, Hurewicz [17] made the weaker conjecture that the Hurewicz property

(Definition 2.2(3)) characterizes σ-compactness. These conjectures turn out to

be false [13, 19] (generalized in [40]). However, the conjectures also make sense

in the group theoretic case. Since the group theoretic properties are hereditary

for subgroups, we need to restate them in the following manner.

Definition 4.1: The Menger Conjecture for groups (respectively, Hure-

wicz Conjecture for groups) is the assertion that each metrizable group G,
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which is Menger-bounded (respectively, Hurewicz-bounded), is a subgroup of

some σ-compact group.

Theorem 3.4 implies that the Hurewicz Conjecture is true when restricted

to subgroups of Z
N. A result of Babinkostova implies that it is true for gen-

eral metrizable groups. Call a subset B of a topological group G left totally

bounded (respectively, right totally bounded, totally bounded) in G if for

each neighborhood U of the identity, there is a finite F ⊆ G such that B ⊆ F ·U

(respectively, B ⊆ U · F , B ⊆ F · U ∩ U · F ).

Theorem 4.2 (Babinkostova [1]): For metrizable groups G: G is Hurewicz-

bounded if, and only if, G is a union of countably many left totally bounded

sets.

For completeness, we give a direct proof of this result.

Proof. The “if” part is easy. We prove the “only if” part. Fix a metric on G

and for each n, let Un be the ball of radius 1/(n + 1) centered at the identity.

Choose finite sets Fn ⊆ G, n ∈ N, such that for each g ∈ G and all but finitely

many n, g ∈ Fn · Un. Then

G ⊆
⋃

m∈N

⋂

n≥m

Fn · Un.

For each m,
⋂

n≥m Fn · Un is left totally bounded in G.

A topological group G can be embedded in a σ-compact group if, and only

if, G is a union of countably many totally bounded sets [34]. The nontrivial

implication follows from the classical fact that the completion of G with respect

to its left-right uniformity is a topological group and the basic fact that totally

bounded and complete sets are compact.

Corollary 4.3: The Hurewicz Conjecture for groups is true.

Proof. Assume that G is Hurewicz-bounded. By Theorem 4.2, G =
⋃

n Bn with

each Bn left totally bounded. Then G = G−1 =
⋃

n B−1
n , where A−1 means

{a−1 : a ∈ A}. If B is left totally bounded, then B−1 is right totally bounded.

(For each neighborhood U of the identity, take a neighborhood V of the identity

such that V −1 ⊆ U , and finite F such that B ⊆ F ·V −1. Then B−1 ⊆ V ·F−1.)
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Thus,

G =
⋃

m,n∈N

Bn ∩ B−1
m ,

and each Bn ∩B−1
m is totally bounded. That is, G is a union of countably many

totally bounded sets.

On the other hand, by Theorem 7.3, even for subgroups of Z
N the Menger

Conjecture is false.

Remark 4.4: Partial results in the direction of Theorem 4.2 and Corollary 4.3,

and results similar to these, were previously obtained in [4, 25, 5] and possibly

in additional places.

5. Continuous images

The group theoretic properties are preserved under continuous homomorphisms,

while their topological counterparts are preserved under arbitrary continuous

functions. The combinatorial properties characterizing the group theoretic

properties hold for arbitrary subsets of Z
N (or of the Baire space N

N), and it

turns out that they are preserved under uniformly continuous images in Z
N. A

consequence of Specker’s work is that every endomorphism of Z
N is continuous,

and therefore uniformly continuous.

Definition 5.1: Abusing terminology, we say that a subset X of Z
N is Menger-

(respectively, Scheepers-, Hurewicz-, Rothberger-) bounded if it satisfies the

property in Theorem 3.1(4) (respectively, 3.2(5), 3.4(3), 3.5(2)).

As far as uniformly continuous images are concerned, we can equivalently

work in N
N (the natural homeomorphism from Z

N to N
N is uniformly continuous

in both directions). In this case, the absolute values in the definitions are not

needed.

We say that Y is a uniformly continuous image of X if it is the image of

a uniformly continuous function Ψ : X → Z
N.

Lemma 5.2: Each of the properties in Definition 5.1 is preserved under uni-

formly continuous images.

Proof. To give a unified proof, we use the equivalent formulations of the prop-

erties which use the additional quantifier “there is h ∈ N
↑N”. Assume that
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Ψ : X → Y is a uniformly continuous surjection. Let h ∈ N
↑N be given for Y .

There exists a number h′(n) for each n such that for each x ∈ X , x � [0, h′(n))

determines Ψ(x) � [0, h(n)), since Ψ is uniformly continuous.

Assume that X is Menger-bounded (the remaining cases are similar). Then

there is f ′ for h′ as in 3.1(2). For each n, let Sn be the set of all s ∈ Z
h′(n) such

that |s| ≤ f ′(n), and for which there is xs ∈ X such that xs � [0, h′(n)) = s.

For each s ∈ Sn, let rs = Ψ(xs) � [0, h(n)) (note that rs depends only on s).

Define f ∈ N
N by

f(n) = max{|rs(k)| : s ∈ Sn, k < h′(n)}

for each n (if Sn = ∅, take f(n) = 0). Then f is as required in 3.1(2) for Y

and h.

Theorem 5.3: Assume that X ⊆ Z
N. X is Menger- (respectively, Scheepers-,

Hurewicz-, Rothberger-) bounded, if, and only if, for each uniformly continuous

image Y of X in Z
N and each h ∈ N

↑N, there is f ∈ N
N such that:

(1) (∀y ∈ Y )(∃n) |y| � [h(n), h(n+1)) ≤ f � [h(n), h(n+1));

(2) (∀finite F ⊆ Y )(∃n)(∀y ∈ F ) |y| � [h(n), h(n+1)) ≤ f � [h(n), h(n+1));

(3) (∀y ∈ Y )(∀∞n) |y| � [h(n), h(n+1)) ≤ f � [h(n), h(n+1));

(4) (∀y ∈ Y )(∃n) y � [h(n), h(n+1)) = f � [h(n), h(n+1));

respectively. Moreover, in each of the above items the quantifier (∃n) can be

replaced by (∃∞n).

Proof. By Lemma 5.2, the implication from the definitions to the new charac-

terizations is immediate. We prove the converse direction.

(1) Given h ∈ N
↑N for X , define h′ ∈ N

↑N by h′(0) = 0, and h′(n) =

h(0) + · · · + h(n − 1) for each n > 0. Define Ψ : X → Z
N by

Ψ(x)(k) = x(k − h′(n))

whenever k ∈ [h′(n), h′(n+1)). Ψ is uniformly continuous (in fact, it is a

homomorphism). Let Y be the image of Ψ, and take f ′ as in (1) for h′. Then

for each x ∈ X , there is n such that x(k − h′(n)) = Ψ(x)(k) ≤ f ′(k) whenever

k ∈ [h′(n), h′(n+1)). Define f(n) = max{f ′(k) : k ∈ [h′(n), h′(n+1))} for each

n. Then f is as in 3.1(2) for X and h.

(2) is similar, and (3) is trivial.

(4) Argue as in (1), and define ϕ(n)(k) = f ′(k+h′(n)) for each k < h(n).
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Remark 5.4: The proof of Theorem 5.3 actually shows that in the context of

groups, the same assertions hold when restricting attention to endomorphisms

rather than arbitrary uniformly continuous functions.

We now turn to arbitrary continuous images.

Theorem 5.5 ([17, 28, 35]): Assume that X ⊆ Z
N. X has the Menger (re-

spectively, Scheepers, Hurewicz, Rothberger) property if, and only if, for each

continuous image Y of X in Z
N, there is f ∈ N

N such that:

(1) (∀y ∈ Y )(∃n) |y|(n) ≤ f(n);

(2) (∀finite F ⊆ Y )(∃n)(∀y ∈ F ) |y|(n) ≤ f(n);

(3) (∀y ∈ Y )(∀∞n) |y|(n) ≤ f(n);

(4) (∀y ∈ Y )(∃n) y(n) = f(n);

respectively. Moreover, in each of the above items the quantifier (∃n) can be

replaced by (∃∞n).

In light of Theorem 3.5, we have that the following theorem extends Fremlin–

Miller’s Theorem 1 from [13] (cf. [6]).

Theorem 5.6: Assume that X ⊆ Z
N. X has the Menger (respectively, Scheep-

ers, Hurewicz, Rothberger) property if, and only if, each continuous image Y of

X in Z
N is Menger- (respectively, Scheepers-, Hurewicz-, Rothberger-) bounded.

Proof. ⇒ Each of the topological properties is preserved under continuous im-

ages and implies the corresponding group theoretic property.

⇐ We treat the Menger case, the other cases being similar. If Y is a con-

tinuous image of X in Z
N, then by the assumption Y is Menger-bounded. By

Theorem 3.1(2) for Y , we have, in particular, that (1) of Theorem 5.5 holds for

Y .

These results and those in the coming sections imply that none of the group-

theoretic properties (considered for general subsets of Z
N) is preserved under

continuous images.

6. Critical cardinalities

A subset D of N
N is dominating if for each g ∈ N

N there exists f ∈ D such

that g ≤∗ f . Let b denote the minimal cardinality of a ≤∗-unbounded subset

of N
N, and d denote the minimal cardinality of a dominating subset of N

N. In
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addition, let cov(M) denote the minimal cardinality of a subset Y of N
N such

that there is no f ∈ N
N such that for each y ∈ Y , f(n) = y(n) for some n.

The name cov(M) comes from the fact that this cardinal is also the minimal

cardinality of a cover of R by meager sets [7]. Finally, let c = 2ℵ0 denote the

cardinality of the continuum.

The mentioned cardinals are related as follows, where an arrow means ≤:

b // max{b, cov(M)} // d // c

ℵ1

OO

// cov(M)

OO

No additional (weak) inequalities among these cardinals can be proved, see [9].

The critical cardinality of a property P of subsets of Z
N is:

non(P ) = min{|X | : X ⊆ Z
N and X does not satisfy P}.

Consider the properties (1)–(4) in Theorem 5.5. The critical cardinality of (1)

is d. It is not difficult to see that d is also the critical cardinality of (2). The

critical cardinality of (3) is b, and cov(M) is the critical cardinality of (4).

Corollary 6.1: (1) The critical cardinalities of the properties Menger,

Menger-bounded (for sets or groups), Scheepers, and Scheepers-boun-

ded (for sets or groups) are all d.

(2) The critical cardinalities of the properties Hurewicz and Hurewicz-

bounded (for sets or groups) are b.

(3) The critical cardinalities of the properties Rothberger and Rothberger-

bounded (for sets or groups) are cov(M).

Proof. For the topological properties this follows from Theorem 5.5. Conse-

quently, Theorem 5.6 implies the assertions for the bounded version of the

properties for sets. To get the property for groups, take a witness Y ⊆ Z
N for

the critical cardinality of the same property for arbitrary sets, and consider 〈Y 〉

(which has the same cardinality as Y ).

7. Comparison of the group theoretic properties

Could any implication—which is not obtained by composition of existing ones—

be added to the diagram in Section 2? We give examples ruling out almost all

possibilities.
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The most simple example is the following.

Theorem 7.1: Let X = {0, 1}N ⊆ Z
N. Then G = 〈X〉 is σ-compact (in

particular, it is Hurewicz-bounded) but is not Rothberger-bounded.

Proof. X is compact and therefore so are all of its finite powers.

Lemma 7.2: Let M be a topological group. Assume that P is a property

which is preserved under uniformly continuous images and countable unions. If

all finite powers of a subset X of M have the property P , then all finite powers

of the group G = 〈X〉 have the property P .

Proof. For each n,

Gn = {m1x1 + · · · + mnxn : m1, . . . , mn ∈ Z, x1, . . . , xn ∈ X}

is a union of countably many continuous images of Xn, Thus, for each k, (Gn)k

is a union of countably many continuous images of Xnk, and therefore has the

property P . Thus, for each k, Gk = 〈X〉k =
⋃

n(Gn)k has the property P .

As σ-compactness is preserved under continuous images and countable unions,

we have by Lemma 7.2 that G = 〈X〉 is σ-compact. On the other hand, it

is clear by Theorem 3.5(2) that X (and in particular G) is not Rothberger-

bounded.

Theorem 7.3: There exists a Scheepers-bounded subgroup of Z
N which is not

Hurewicz-bounded.

Proof. By a theorem of Chaber and Pol [12] (see also [40]), there is a subset X

of Z
N such that all finite powers of X have the Menger property, but X is not

contained in any σ-compact subset of Z
N. Let G = 〈X〉.

Menger’s property is preserved under continuous images and countable

unions. By Lemma 7.2, G has the Menger property. By the following lemma,

G is Scheepers-bounded.

Lemma 7.4 ([2, 6]): A topological group G is Scheepers-bounded if, and only

if, all finite powers of G are Menger-bounded.

Finally, as G ⊇ X , G is not contained in any σ-compact subset of Z
N. By

Theorem 3.4, G is not Hurewicz-bounded.
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By a deep result of Laver [23], it is consistent that all strong measure zero

sets of reals are countable (and therefore have all properties considered in this

paper). Thus, special hypotheses are necessary for constructions of nontrivial

Rothberger-bounded groups. One can replace all of the special hypotheses made

in this paper concerning equalities among cardinals by the Continuum Hypoth-

esis or just Martin’s Axiom, which are both stronger than our hypotheses.

Theorem 7.5: Assume that cov(M) = c. Then there exists a subgroup of

Z
N which is Rothberger-bounded (and Scheepers-bounded) but not Hurewicz-

bounded.

Proof. For a cardinal κ, L ⊆ Z
N is a κ-Luzin set if |L| ≥ κ, and for each

meager set M ⊆ Z
N, |L ∩ M | < κ. Our assumption implies the existence of a

cov(M)-Luzin set L ⊆ Z
N such that all finite powers of L have the Rothberger

property [19]. Take G = 〈L〉. As the Rothberger property is preserved under

continuous images and countable unions, we have by Lemma 7.2 that all finite

powers of G have the Rothberger (in particular, Menger) property. It follows

from Lemma 7.4 that G is Scheepers-bounded.

Lemma 7.6: Assume that L ⊆ Z
N is a κ-Luzin set. Then L is ≤∗-unbounded.

Proof. For each f ∈ N
N, the set M = {g ∈ Z

N : |g| ≤∗ f} is meager in Z
N, thus

|L ∩ M | < κ = |L|, and in particular L 6⊆ M .

As G ⊇ L, G is ≤∗-unbounded. By Theorem 3.1, G is not Hurewicz-

bounded.

Remark 7.7: Assuming cov(M) = c, there exist subgroups of R
N which are

cov(M)-Luzin sets [36]. However, in Z
N this is impossible: The subset 2Z

N =

{2f : f ∈ Z
N} of Z

N is nowhere dense, but G ∩ 2Z
N ⊇ 2G has the same

cardinality as G.

In summary, as far as the group theoretic properties are concerned, no im-

plications can be added among those corresponding to the classical Menger,

Hurewicz, and Rothberger properties. Concerning the newer Scheepers prop-

erty, only the following (related) problems remain open (compare this to Prob-

lems 1 and 2 of [19]).
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Problem 7.8:

(1) Is every Menger-bounded subgroup of Z
N Scheepers-bounded?2

(2) And if not, is every Rothberger-bounded subgroup of Z
N Scheepers-

bounded?

8. The topological properties are strictly stronger

Kočinac in [20] and Babinkostova, Kočinac and Scheepers in their first version of

[2], asked whether each group theoretic property coincides with its topological

counterpart. Note that in Section 7, all groups exhibiting some group theoretic

properties actually exhibited the corresponding topological property. We show

that in general this is not the case.

In some of the cases, it will be easier to carry out our constructions in Z
N

2

rather than in Z
N. The extension to Z

N is as follows. Assume that H is a

subgroup of Z
N

2 , and G = 〈H〉 is the subgroup of Z
N generated by H as a

subset of Z
N. Then G is a subgroup of 〈{0, 1}N〉, which by Theorem 7.1 is

σ-compact. Thus, G is Hurewicz-bounded. To see that G violates a property

when H does, we will use the following.

Lemma 8.1: Assume that P is a property which is preserved under uniformly

continuous images, H is a subgroup of Z
N

2 , and G = 〈H〉 is the subgroup of Z
N

generated by H as a subset of Z
N. Then: For each k, if Hk does not have the

property P , then Gk does not have the property P .

Proof. The mapping Ψ : Z
N → Z

N
2 defined by

Ψ(f)(n) = f(n) mod 2

for each n is a continuous group homomorphism (in particular, it is uniformly

continuous), and therefore

Ψ[G] = Ψ[〈H〉] = 〈Ψ[H ]〉 = 〈H〉 = H.

Thus, Hk is a continuous homomorphic image of Gk. Thus, if Gk has the

property P , then so does Hk.

2 This was recently answered in the negative in: M. Machura, S. Shelah and B. Tsaban,

Squares of Menger-bounded groups, Transactions of the American Mathematical Society,

to appear.



Vol. 168, 2008 THE BAER-SPECKER GROUP 141

Identify Z
N

2 with P (N) by taking characteristic functions. The group op-

eration on P (N) induced by this identification is ∆, the symmetric difference.

The Rothberger space, denoted [N]ℵ0 , is the subspace of P (N) consisting of

all infinite sets of natural numbers. Let [N]<ℵ0 ⊆ P (N) denote the collection

of finite sets of natural numbers. One can think of the following construction

and some of the others in the sequel as being carried out in the Rothberger

group P (N)/[N]<ℵ0 . However, we prefer to argue directly. [N]<ℵ0 is a subgroup

of P (N). Let

e : [N]ℵ0 → N
↑N

denote the continuous function which assigns to each infinite subset of N its

increasing enumeration.

Theorem 8.2: There exists a subgroup G of a σ-compact subgroup of Z
N (thus,

G is Hurewicz-bounded) which does not have the Menger property.

Proof. If G is a subgroup of P (N) with these properties then, by Lemma 8.1

(here P is the Menger property) and the discussion preceding it, so is the group

it generates in Z
N. Thus, we can work in P (N).

Lemma 8.3: There is a family D ⊆ [N]ℵ0 such that the subgroup G = 〈D〉 of

P (N) is contained in [N]ℵ0 ∪ {∅}, and e[D] ⊆ N
N is dominating.

Proof. Fix a dominating subset {fα : α < d} of N
↑N. Define D = {dα : α < d} ⊆

[N]ℵ0 by induction on α: At step α, let

Gα = 〈{dβ : β < α} ∪ [N]<ℵ0〉 = 〈{dβ : β < α}〉∆[N]<ℵ0 .

Then |Gα| = max{|α|,ℵ0} < d. There are continuum many g ∈ N
↑N such that

fα ≤∗ g, so we can choose gα ∈ N
↑N such that fα ≤∗ gα 6∈ e[Gα ∩ [N]ℵ0 ]. Take

dα = e−1(gα) = im(gα).

Take D as Lemma 8.3, and let G = 〈D〉 be the generated group in P (N). We

claim that G does not have the Menger property. We will use the fact that the

Menger property is stable under removing finitely many points. The Menger

property is hereditary for closed subsets and preserved under countable unions.

Lemma 8.4: Assume that a property P is hereditary for closed subsets and

preserved under countable unions. If X ⊆ P (N) has the property P , then for

each x ∈ X , X \ {x} has the property P .
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Proof. A well-known property of the Cantor space (and therefore also of P (N))

is that for each x ∈ P (N), P (N)\{x} is an Fσ subset of P (N). Let x ∈ X . Then

X \ {x} =
⋃

n Cn where each Cn is a closed subset of X , and therefore has the

property P . Consequently,
⋃

n Cn = X \ {x} has this property, too.

Assume that G has the Menger property. Then by Lemma 8.4, so does G\{∅},

which is a subset of [N]ℵ0 . Now, e[D] ⊆ e[G\{∅}] ⊆ N
N and e[D] is dominating.

Thus e[G \ {∅}], a continuous image of G \ {∅}, is dominating. This contradicts

Theorem 5.5(1).

We now treat the Rothberger-bounded groups. Recall the comments made

before Theorem 7.5.

Theorem 8.5: Assume that cov(M) = b = d. Then there exists a subgroup G

of a σ-compact subgroup of Z
N such that all finite powers of G are Rothberger-

bounded (and Hurewicz-bounded), but G does not have the Menger property.

Proof. First, we prove the assertion for subgroups of P (N).

Construct D ⊆ [N]ℵ0 as in Lemma 8.3, but this time using the fact that at

each stage α, |{gβ : β < α}| < b to make sure that for each α < β, gβ ≤∗ gα.

Having this, set X = D ∪ [N]<ℵ0 . As b ≤ cov(M), we have by Corollary 14

of [8] (see [40]) that all finite powers of X have the Rothberger property. By

Lemma 7.2, the subgroup G = 〈X〉 of P (N) (and all its finite powers) has the

Rothberger property. In particular, it is Rothberger-bounded. Consequently,

so is its subgroup H = 〈D〉. In the proof of Theorem 8.2 it was shown that H

cannot have the Menger property.

In Z
N, take G̃ = 〈G〉 and H̃ = 〈H〉. H, G are subgroups of the σ-compact

group 〈{0, 1}N〉. By Lemma 7.2, all finite powers of G̃ have the Rothberger

property. In particular they are Rothberger-bounded and thus the same holds

for the subgroup H̃ of G̃. By Lemma 8.1, H̃ does not have the Menger

property.

Remark 8.6: The hypothesis b ≤ cov(M) suffices to obtain a subgroup G of

Z
N such that all finite powers of G are Rothberger-bounded (and Hurewicz-

bounded), but G does not have the Hurewicz property. To achieve that, we

only make sure in the last proof that D is ≤∗-unbounded, without necessarily

having it dominating.
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9. Additional examples

The immediate relationships among the properties considered in this paper are

summarized in the following diagram.

Hurewicz-bounded // Scheepers-bounded // Menger-bounded

Hurewicz //

77
n

n
n

n
n

n
n

n
n

n
n

n

Scheepers //

55
l

l
l

l
l

l
l

l
l

l
l

l
l

l

Menger

55
k

k
k

k
k

k
k

k
k

k
k

k
k

k

Rothberger-bounded

OO

Rothberger

OO 55
k

k
k

k
k

k
k

k
k

k
k

k
k

k

An interesting question is, whether additional relationships can be proved

to hold. In other words: Which of the settings consistent with the present

implications can be realized by a single group? As Problem 7.8 is still open,

we can only hope to settle the possible settings in the collapsed diagram where

“Scheepers” and “Menger” are identified, that is, consider only the classical

properties:

Hurewicz-bounded // Menger-bounded

Hurewicz //

66
m

m
m

m
m

m
m

m
m

m
m

m
m

Menger

55
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

Rothberger-bounded

OO

Rothberger

OO 55
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

In all of our example, Menger-bounded groups will also be Scheepers-bounded,

and groups with the Menger property will also have the Scheepers property.

To make our assertions visually clear, we will use copies of the diagram with

“•” placed in positions corresponding to a property that a given group has,

and “◦” in positions corresponding to a property that the group does not have.

There are exactly 14 possible settings to check. They all appear in Figure 1,

where each setting is labelled (n.m) where n is the number of •’s in that setting.

Let us begin with the immediate examples.

Proposition 9.1: Setting (0) is realized by Z
N. Setting (6) is realized by all

countable subgroups of Z
N.

Proof. (0) See Theorem 3.1(4).

(6) All critical cardinalities are uncountable (Theorem 6.1).
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◦ // ◦

◦ //

99
r

r
r

r
r

r

◦

99
r

r
r

r
r

r

◦
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(0) ◦

OO
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r
r

r
r

r
r

◦ // •
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r
r

r
r

r

◦
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r

r
r

r
r

r

◦
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(1) ◦

OO
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r

r
r

r
r
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r

r
r

r
r

r

◦
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r

r
r

r
r

r

◦
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(2.a) ◦
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r
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r
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r
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r
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r
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r
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r
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•
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Figure 1. All settings consistent with the present arrows

A less trivial realization of Setting (6) is the group G̃ in the proof of Theorem

8.5 constructed under the hypothesis b ≤ cov(M) (see Remark 8.6). Note

further that any dominating subset of Z
N generates a realization of the second

setting (Theorem 3.1).

Section 6 implies consistent realizations of Settings (4.b), (4.c), and (2.c):

For Setting (4.b), assume that cov(M) < b (which is consistent). By Theorem

6.1(3), there is a subgroup G of Z
N such that |G| = cov(M) and G is not

Rothberger-bounded. As |G| < b, we have by By Theorem 6.1(2) that G has

the Hurewicz property. Setting (4.c) follows, in a similar manner, from the

consistency of b < cov(M). For Setting (2.c), assume that max{b, cov(M)} < d

(which is consistent), and take by Theorem 6.1(2,3) subgroups G, H of Z
N such

that |G| = b, |H | = cov(M), and G is not Hurewicz-bounded and H is not

Rothberger-bounded. Let M = G + H . |M | = max{b, cov(M)} < d, and
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thus by 6.1(1) M has the Menger property. As M contains G and H , it is not

Hurewicz-bounded nor Rothberger-bounded.

By Laver’s result, each of the settings (2.b), (3.a), (3.c), (4.a), (4.c), (5.a)

and (5.b) requires some special hypothesis to be realized. Settings (4.b) and

(2.c), mentioned in the previous paragraph, are not in that list, and indeed do

not require any special hypothesis.

Theorem 9.2: Settings (4.b) and (2.c) are realized.

Proof. (4.b) The proof of Theorem 7.1 shows that the group G = 〈{0, 1}N〉 is

as required.

(2.c) By Theorem 7.1, G = 〈{0, 1}N〉 is σ-compact.

For a proof of the following, see Lemma 2.6 of [39].

Lemma 9.3 (folklore): Assume that X is a σ-compact space, and Y has the

Menger property. Then X × Y has the Menger property.

The following also follows from Theorems 3.1, 3.2, and 3.4.

Lemma 9.4 (Babinkostova [1]): Assume that G is a Hurewicz-bounded sub-

group of Z
N, and H is a Menger- (respectively, Scheepers-, Hurewicz-) bounded

subgroup of Z
N. Then G + H is Menger- (respectively, Scheepers-, Hurewicz-)

bounded.

On the other hand, G + H , containing G, is not Rothberger-bounded.

Take G = 〈{0, 1}N〉 and let H be as in Theorem 7.3. By Lemma 9.3, G + H

(a continuous image of G × H) has the Menger property. Containing G, it is

not Rothberger-bounded, as is evident from Theorem 3.5(2). Containing H , it

is not Hurewicz-bounded, either.

Recall that Setting (4.c) is realized when max{b, cov(M)} < d. This setting

can also be realized when the involved critical cardinalities are equal.

Theorem 9.5: Assume that cov(M) = c. Then Setting (4.c) is realized.

Proof. See the proof of Theorem 7.5.

Theorem 9.6: Setting (2.a) is realized.

Proof. Let G be as in Theorem 8.2 and take 〈{0, 1}N〉+G. Use Lemma 9.3.

Theorem 9.7: Assume that cov(M) = b = d. Then Setting (3.a) is realized.

Proof. See the proof of Theorem 8.5.
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Theorem 9.8: Setting (1) is realized.

Proof. Take G + H + 〈{0, 1}N〉, where G is from Theorem 8.2 and H is from

Theorem 7.3. As this group contains all three groups, it cannot satisfy any of our

properties, except perhaps Menger-boundedness. As H is Menger-bounded and

〈{0, 1}N〉 is σ-compact, H + 〈{0, 1}N〉 is Menger-bounded. As G is a subgroup

of a σ-compact group, G + H + 〈{0, 1}N〉 is Menger-bounded.

Theorem 9.9: Setting (3.b) is realized.

Proof. By a result of Mycielski [26], there is a subset C of Z
N

2 , which is linearly

independent over Z2, and is homeomorphic to Z
N

2 . Then C contains a subset

homeomorphic to Z
N. Let X be as in Theorem 7.3, and let Y be a topological

embedding of X in C. Let G = 〈Y 〉. As all finite powers of Y have the Menger

property, G has this property too.

As C is closed and Y = G ∩ C, Y is closed in G. As Y does not have the

Hurewicz property, G does not have the Hurewicz property.

By Lemmas 7.2 and 8.1, the subgroup G̃ = 〈G〉 of Z
N has the Menger property

in all finite powers, and does not have the Hurewicz property. It is Hurewicz-

bounded since it is a subgroup of the σ-compact group 〈{0, 1}N〉. Take the

group 〈{0, 1}N〉 + G̃ and use Lemma 9.3.

Theorem 9.10: Assume that cov(M) = c. Then Setting (5.a) is realized.

Proof. This is similar to the proof of Theorem 9.9. Let C be as in that proof,

and L be as in Theorem 7.5. Let M be a topological embedding of L in C, and

take G = 〈M〉 in P (N). As all finite powers of M have the Rothberger property,

this holds for G too (Lemma 7.2).

As M is a closed subset of G and M does not have the Hurewicz property, G

does not have the Hurewicz property.

Take G̃ = 〈G〉 in Z
N, and use Lemmas 7.2 and 8.1.

Theorem 9.11: Assume that b = cov(M) < d. Then Setting (4.a) is realized.

Proof. We first get a subgroup of P (N).

Lemma 9.12: Assume that b = cov(M). Then there is a family B =

{bα : α < b} ⊆ [N]ℵ0 such that the subgroup G = 〈B〉 of P (N) is contained

in [N]ℵ0 ∪ {∅}, and e[B] ⊆ N
N has the following properties:
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(1) e[B] = {e(bα) : α < b} is ≤∗-increasing with α and ≤∗-unbounded,

(2) There is a continuous Φ : N
N → N

N such that Φ[e[B]] is a witness for

the combinatorial definition of cov(M).

Proof. Let κ = b = cov(M), and Y = {yα : α < κ} ⊆ N
N be such that there is

no f ∈ N
N such that for each y ∈ Y , f(n) = y(n) for some n.

Fix a ≤∗-unbounded subset {fα : α < κ} of N
↑N. Fix a bijection ι : N×N → N

such that m, n ≤ ι(m, n) for all m, n.3 We will use the homeomorphism

Ψ : N
N × N

N → N
N defined by

Ψ(f, g)(n) = ι(f(n), g(n))

for each n. Note that h ≤∗ Ψ(f, g) whenever h ≤∗ g.

Define B = {bα : α < κ} ⊆ [N]ℵ0 by induction on α: At step α, let

Gα = 〈{bβ : β < α} ∪ [N]<ℵ0〉 = 〈{bβ : β < α}〉∆[N]<ℵ0 .

Let hα be a ≤∗-bound of {e[bβ] : β < α}. We may assume that fα ≤ hα. Let

Aα = {Ψ(yα, g) : g ∈ N
↑N, hα ≤∗ g}.

As Ψ is injective, |Aα| = c ≥ κ > |Gα|, so we can choose gα ∈ Aα \e[Gα∩ [N]ℵ0 ].

Take bα = e−1(gα) = im(gα).

Clearly, 〈B〉 ⊆ [N]ℵ0 ∪ {∅} and (1) holds. For (2), let Φ : N
N → N

N be the

mapping Φ(Ψ(y, g)) = y. Then Φ[e[B]] = Y .

Let κ = b = cov(M). Take B ⊆ [N]ℵ0 as in Lemma 9.12. As b ≤ cov(M), all

finite powers of B ∪ [N]<ℵ0 have the Rothberger property [8], and by Lemma

7.2, so does G = 〈B ∪ [N]<ℵ0〉 in P (N). Consequently, its subgroup H = 〈B〉 is

Rothberger-bounded. As |H | = κ < d, H has the Menger property.

As e[H \ {∅}] ⊇ e[B] is ≤∗-unbounded, H \ {∅} does not have the Hurewicz

property. By Lemma 8.4, H does not have the Hurewicz property. Now,

Φ[e[H \ {∅}]] ⊇ Φ[e[B]], and Φ[e[B]] does not have strong measure zero. As

having strong measure zero is a hereditary property, Φ[e[H \ {∅}]] does not

have strong measure zero. As Φ is continuous, e[H \ {∅}] does not have the

Rothberger property, and therefore neither does H \{∅}. Consequently, H does

not have the Rothberger property.

3 The canonical bijection ι : N × N → N has the required property.
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To get a subgroup of Z
N as required, take G̃ = 〈G〉 and H̃ = 〈H〉 in Z

N.

By Lemma 7.2, G̃ has the Rothberger property, and therefore H̃ is Rothberger-

bounded. Being a subgroup of 〈{0, 1}N〉, it is Hurewicz-bounded. It has the

Menger property because |H̃ | = κ < d. By Lemma 8.1, H̃ does not have the

Hurewicz nor the Rothberger property.

Having successfully realized all but three of the settings in Figure 1, one may

be tempted to assume that all settings can be realized. Surprisingly, this is not

entirely the case.

Theorem 9.13: There does not exists a realization of Setting (5.b).

Proof. In [27] it is proved that if a set of reals has the Hurewicz property and

has strong measure zero, then it has the Rothberger property (see [38] for a

simple proof of that assertion). Use Theorem 3.5.

Only the Settings (2.b) and (3.c) of Figure 1 remain unsettled.

Problem 9.14: 4 Is it consistent that there is a subgroup G of Z
N such that

G has strong measure zero, is unbounded (with respect to ≤∗), and does not

have the Menger property?

Problem 9.15: 4 Is it consistent that there is a subgroup G of Z
N such that G

has strong measure zero and Menger’s property, but is unbounded (with respect

to ≤∗) and does not have the Rothberger property?
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