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Abstract

For a set X ⊆ R, let B(X) ⊆ RX denote the space of Borel real-valued functions on X , with the
topology inherited from the Tychonoff product RX . Assume that for each countable A ⊆ B(X), each f in
the closure of A is in the closure of A under pointwise limits of sequences of partial functions. We show
that in this case, B(X) is countably Fréchet–Urysohn, that is, each point in the closure of a countable set is a
limit of a sequence of elements of that set. This solves a problem of Arnold Miller. The continuous version
of this problem is equivalent to a notorious open problem of Gerlits and Nagy. Answering a question of
Salvador Hernańdez, we show that the same result holds for the space of all Baire class 1 functions on X .

We conjecture that, in the general context, the answer to the continuous version of this problem is
negative, but we identify a nontrivial context where the problem has a positive solution.

The proofs establish new local-to-global correspondences, and use methods of infinite-combinatorial
topology, including a new fusion result of Francis Jordan.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction and basic results

Let X ⊆ R. C(X) is the family of all continuous real-valued functions on X . We consider
C(X) with the topology inherited from the Tychonoff product RX . A basis of the topology is
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given by the sets

[ f ; x1, . . . , xk; ϵ] := {g ∈ C(X) : (∀i = 1, . . . , k) |g(xi ) − f (xi )| < ϵ},

where f ∈ C(X), k ∈ N, x1, . . . , xk ∈ X , and ϵ is a positive real number. This is the topology of
pointwise convergence, where a sequence (more generally, a net) fn converges to f if and only
if for each x ∈ X , the sequence of real numbers fn(x) converges to f (x).

By definition, the (topological) closure A of a set A ⊆ C(X) is the set of all f ∈ C(X)

such that, for all k ∈ N, x1, . . . , xk ∈ X , and positive ϵ, there is an element g ∈ A such that
|g(xi ) − f (xi )| < ϵ for i = 1, . . . , k. (Equivalently, there is a net in A converging pointwise to
f .) C(X) is metrizable only when X is countable, and thus it makes sense to ask, when X is not
countable, when do limits of sequences determine the closure of sets.

For a topological space Y and A ⊆ Y , the closure of A under limits of sequences is the
smallest set C ⊆ Y containing A, such that for each convergent (in Y ) sequence of elements of
C , the limit of this sequence is also in C . The closure of A under limits of sequences is contained
in the topological closure A of A in Y .

Gerlits [6], and independently Pytkeev [17], proved that if limits determine the closure in
C(X), then indeed it suffices to take limits once.

Theorem 1.1 (Gerlits, Pytkeev). Let X be a Tychonoff space. Assume that, for each A ⊆ C(X),
each f ∈ A (closure in C(X)) belongs to the closure (in C(X)) of A under limits of sequences.
Then, for each A ⊆ C(X), each f ∈ A is a limit of a sequence of elements of A.

The properties of C(X) in the premise and in the conclusion of Theorem 1.1 are often named
sequential and Fréchet–Urysohn, respectively.

Consider now partial functions f : X → R, that is, functions whose domain is a (not
necessarily proper) subset of X .

Definition 1.2. Let f1, f2, . . . : X → R be partial functions. The partial limit function f =

limn fn is the partial real-valued function on X , with dom( f ) being the set of all x such that
fn(x) is eventually defined and converges, defined by f (x) = limn fn(x) for each x ∈ dom( f ).

Thus, for f1, f2, . . . ∈ C(X), the ordinary limit limn fn exists in C(X) if and only if the
domain of the partial limit function f = limn fn is X , and f is continuous. The partial limit of a
sequence of partial functions always exist, though it may be the empty function.

Definition 1.3. For a set A of partial functions f : X → R, the closure of A under partial limits
of sequences, partlims(A), is the smallest set C of partial functions f : X → R, such that A ⊆ C
and for each sequence in C , the partial limit of this sequence is also in C .

Thus, the closure, in C(X), of a set A ⊆ C(X) under limits of sequences is a subset of
C(X) ∩ partlims(A).

Lemma 1.4. For each A ⊆ C(X), C(X) ∩ partlims(A) is contained in A, the closure of A in
C(X).

Proof. The definition of basic open sets in C(X) (or RX ) may be extended to partial functions,
by letting [ f ; x1, . . . , xk; ϵ] be the set of all partial g : X → R such that x1, . . . , xk ∈ dom(g)

and |g(xi ) − f (xi )| < ϵ, for all i = 1, . . . , k.
Assume that f ∉ A. Take x1, . . . , xk ∈ X and ϵ > 0, such that A ∩ [ f ; x1, . . . , xk; ϵ] = ∅.

Then A ⊆ [ f ; x1, . . . , xk; ϵ]c, and [ f ; x1, . . . , xk; ϵ]c is closed under limits of partial functions:
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Assume and g = limn gn ∈ [ f ; x1, . . . , xk; ϵ]. Then x1, . . . , xk ∈ dom(g), and |g(xi )− f (xi )| <

ϵ, and therefore the same holds for gn , for all but finitely many n. In particular, it cannot be the
case that g1, g2, . . . ∈ [ f ; x1, . . . , xk; ϵ]c.

It follows that f is not in the closure of A under partial limits of sequences. �

In 1982, Gerlits and Nagy published their seminal paper [7]. This paper has generated
over 200 subsequent papers and a rich theory. Among the problems posed in [7], only one
remains open. On its surface, the Gerlits–Nagy Problem is a combinatorial one, and we defer
its combinatorial formulation to Section 4, where we prove that the Gerlits–Nagy Problem is
equivalent to the following fundamental problem, dealing with pointwise convergence of real-
valued functions.

Problem 1.5 (Gerlits–Nagy [7]). Assume that, for each A ⊆ C(X), each f ∈ A belongs to the
closure of A under partial limits of sequences. Does it follow that, for each A ⊆ C(X), each
f ∈ A is a limit of a sequence of elements of A?

In the Second Workshop on Coverings, Selections, and Games in Topology (Lecce, Italy,
2005), Arnold Miller delivered a plenary lecture, where he posed the variant of the Gerlits–Nagy
Problem, dealing with Borel rather than continuous functions [14].

Let B(X) ⊆ RX be the family of all Borel real-valued functions on X . One may consider the
questions discussed above also for B(X), with the following reservation: Here, one must restrict
attention to countable A ⊆ B(X), as we now show.

Each of the properties mentioned in the above discussion implies that C(X) is countably tight,
that is, each point in the closure of a set is in the closure of a countable subset of that set. The
standard proof would be by transfinite induction on the countable ordinals, but we adopt here an
argument given in [2].

Proposition 1.6. Let X be a topological space. Assume that, for each A ⊆ C(X), each f ∈ A
belongs to the closure of A under partial limits of sequences. Then C(X) is countably tight.

Proof. Let A ⊆ C(X). By Lemma 1.4, partlims(A) ∩ C(X) ⊆ A. Thus, it suffices to show that
for each f ∈ A, there is a countable D ⊆ A such that f ∈ partlims(D).

Let B =


{partlims(D) : D ⊆ A is countable}. Then B is closed under partial limits of
sequences: Let f1, f2, . . . ∈ B. Then there are countable D1, D2, . . . ⊆ A, such that fn ∈

partlims(Dn) for all n. Let D =


n Dn . Then f1, f2, . . . ∈ partlims(D), and therefore
limn fn ∈ partlims(D) ⊆ B.

Thus, partlims(A) ⊆ B, as required. �

By a classical result of Arhangel’skiı̆, C(X) is countably tight for all X ⊆ R (indeed, for
all topological spaces X such that all finite powers of X are Lindelöf). However, B(X) is not
countably tight, unless X is countable (in which case, RX , and thus B(X), is metrizable).

We denote by 1 the constant function identically equal to 1 on X .

Proposition 1.7. Let X be an uncountable space, where each singleton is Borel. Then B(X) is
not countably tight.

Proof. Take A = {χF : F ⊆ X finite} ⊆ B(X), where χF denotes the characteristic function of
F . Then the constant function 1 is in A. Let D = {χFn : n ∈ N} ⊆ X . Take a ∈ X \


n Fn . Then

χFn (a) = 0 for all n, and thus 1 ∉ D. �
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Problem 1.8 (Miller 2005 [14]). Assume that, for each countable A ⊆ B(X), each f ∈ A
belongs to the closure of A under partial limits of sequences. Does it follow that, for each
countable A ⊆ B(X), each f ∈ A is a limit of a sequence of elements of A?

Our main result (Section 2) is a solution, in the affirmative, of Miller’s problem. At the end
of the second author’s talk in the conference Functional Analysis in Valencia 2010, Salvador
Hernańdez asked what is the solution to Miller’s problem when considering Baire class 1
functions (i.e., functions which are pointwise limits of sequences of continuous functions). We
solve Hernańdez’s problem in Section 3. Finally, we establish several results concerning the
original Gerlits–Nagy Problem, and pose some related problems.

2. Borel functions (Miller’s problems)

We solve Miller’s Problem 1.8 in the affirmative. Indeed, we do so not only for sets X ⊆ R,
but for all topological spaces X .

Theorem 2.1. Let X be a topological space. Assume that, for each countable A ⊆ B(X), each
f ∈ A belongs to the closure of A under partial limits of sequences. Then for each countable
A ⊆ B(X), each f ∈ A is a limit of a sequence of elements of A.

The proof is divided naturally into four steps. For brevity, we make the following convention,
that will hold throughout the paper.

Convention 2.2. Let X be a topological space. We say that U is a cover of X if X =


U , but
X ∉ U . By Borel cover of X we always mean a countable family U of Borel subsets of X , such
that the union of all members of U is X .

Step 1: Local to global

We deduce from the given local property of B(X), a global property of X .

Definition 2.3 (Gerlits–Nagy [7]). A cover U of X is an ω-cover of X if each finite F ⊆ X is
contained in a member of U .

For sets B1, B2, . . . , let

liminfn Bn =


m


n≥m

Bn,

that is, the set of all x which belong to Bn for all but finitely many n. Let LI(U ) be the closure of
U under the operator liminf.

A basic property of liminfn Bn is that it does not depend on the first few sets Bn .

Lemma 2.4. Let X be a topological space. Assume that, for each countable A ⊆ B(X), each
f ∈ A belongs to partlims(A). Then for each Borel ω-cover U of X, X ∈ LI(U ).

Proof. Let U be a Borel ω-cover of X . Take A = {χU : U ∈ U }. Then A ⊆ B(X) is countable,
and 1 ∈ A. Thus, 1 ∈ partlims(A).

As each f ∈ A is {0, 1}-valued, and limits of convergent sequences of 0’s and 1’s must be
either 0 or 1, each f in partlims(A) is {0, 1}-valued. Let C be the set of all partial {0, 1}-valued
functions f on X , such that f −1(1) ∈ LI(U ). Then A ⊆ C , and C is closed under partial limits
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of sequences. Indeed, let f1, f2, . . . ∈ C , and f = limn fn . As limn fn(x) = f (x) and the
functions fn are {0, 1}-valued, f −1(1) = liminfn f −1

n (1) ∈ LI(U ).
Therefore, partlims(A) is contained in C , and in particular 1 ∈ C , that is, there is B ∈ LI(U )

such that X = 1−1(1) ⊆ B. Thus, X = B ∈ LI(U ). �

Step 2: A selective property

Definition 2.5. For a family F of subsets of X , let

F↓ = {B ⊆ X : (∃A ∈ F ) B ⊆ A},

the closure of F under taking subsets.

For a family F of sets,


F (without running index) denotes the union of all members of
F . We say that a family of sets V refines another family U if each V ∈ V is contained in some
U ∈ U . The following result may be obtained by following arguments of Gerlits and Nagy [7]
and arguments of Nowik et al. [15], proved for open covers (under certain hypotheses on the
space X ). We provide a different, direct proof, which makes no assumption on X .

Proposition 2.6. Let X be a topological space. Assume that for each Borel ω-cover U of X,
X ∈ LI(U ). Then for each sequence U1, U2, . . . of Borel covers of X, there are finite sets

F1 ⊆ U1, F2 ⊆ U2, . . . , such that for each x ∈ X, x ∈


Fn for all but finitely many n.

Proof. By moving to refinements, we may assume that for each n, the elements of Un are pairwise
disjoint, and Un+1 refines Un .1 This way, if there are infinitely many n such that Un contains a
finite subcover Fn of X , then this is true for all n and the required assertion follows immediately.
Thus, we may assume that for each n, Un does not contain a finite subcover of X .

Let

B =


liminfn


Fn : (∀n)Fn is a finite subset of Un


.

We must prove that X ∈ B.
LI(B↓) = B↓: For each k, assume that Bk ⊆ liminfn


F k

n , with each F k
n a finite subset of

Un . Take Fn = F 1
n ∪ F 2

n ∪ · · · ∪ F n
n for each n. Then

liminfk Bk ⊆ liminfk liminfn


F k

n ⊆ liminfn


Fn ∈ B,

and thus liminfn Bn ∈ B↓.
Thus, LI(B) ⊆ B↓, and therefore if X ∈ LI(B) then X ∈ B. B is an ω-cover of X and its

elements are Borel, but B is in general not countable, and thus we cannot apply the premise of
the lemma. To overcome this problem, we use a trick similar to one in [7]: Define

A =


n∈N


F : F ⊆ Un, |F | = n


.

A is a Borel ω-cover of X , and therefore by the premise of the lemma, X ∈ LI(A) ⊆

LI(A↓ ∪ B↓). As X ∉ A, it remains to show that LI(A↓ ∪ B↓) = A↓ ∪ B↓.
Let B1, B2, . . . ∈ A↓ ∪ B↓. As liminfn Bn ⊆ liminfn Bmn for each increasing sequence mn ,

and A↓ ∪ B↓ is closed downwards, we may move to subsequences at our convenience.

1 Given a Borel cover U = {Un : n ∈ N}, the Borel cover {Un \ (U1 ∪ · · · ∪ Un−1) : n ∈ N} refines U , and
its elements are pairwise disjoint. Given two Borel covers U , V whose elements are pairwise disjoint, the Borel cover
{U ∩ V : U ∈ U , V ∈ V} refines U and V , and in particular its elements are pairwise disjoint.
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If Bn ∈ B↓ for infinitely many n, then by moving to a subsequence we may assume that
Bn ∈ B↓ for all n, and therefore liminfn Bn ∈ LI(B↓) = B↓ ⊆ A↓ ∪ B↓. In the remaining case,
by moving to a subsequence, we may assume that Bn ∈ A↓ for all n.

Consider first the case where, after moving to an appropriate subsequence of B1, B2, . . . ,

there is an increasing sequence kn such that Bn ⊆


Fkn , Fkn ⊆ Ukn with |Fkn | = kn , for all n.
As the covers Un are getting finer with n, for each i ∉ {kn : n ∈ N} there is a finite Fi ⊆ Ui such
that


Fi contains


Fkn for the first n with i < kn . Then

liminfn Bn ⊆ liminfn


Fn ∈ B,

as required.
Finally, there remains the case where, after moving to an appropriate subsequence of B1,

B2, . . . , there is k such that for each n, there is Fn ⊆ Uk with |Fn| = k, such that Bn ⊆


Fn .
Let B = lim inf Bn . We will show that B ∈ A↓. We may assume that B ≠ ∅. Take x1 ∈ B,
and U1 ∈ Uk such that x1 ∈ U1. If B ⊆ U1, then B ∈ A↓. Otherwise, take x2 ∈ B \ U1, and
U2 ∈ Uk such that x2 ∈ U2. Continue in the same manner until it is impossible to proceed, but
not more than k steps, to have x1, . . . , xi ∈ B, where i ≤ k, and distinct (and therefore disjoint)
U1, . . . , Ui ∈ Uk . If i < k, then B ⊆ U1 ∪ · · · ∪ Ui , a union of less than k elements of Uk ,
and thus B ∈ A↓. Otherwise i = k, and for all but finitely many n, x1, . . . , xk ∈ Bn ⊆


Fn ,

and as the elements of Uk are pairwise disjoint, Fn = {U1, . . . , Uk} for all but finitely many n.
Consequently, B ⊆ liminfn


Fn = U1 ∪ · · · ∪ Uk ∈ A, and therefore B ∈ A↓. �

Step 3: A stronger selective property

The selective property in the following theorem is stronger ([20], or Lemma 4.1) than the
one introduced in the previous step. In its original formulation [14], Miller’s Problem 1.8 asks
whether the following theorem is true.

Theorem 2.7. Assume that for each Borel ω-cover U of X, X ∈ LI(U ). Then in fact, for each
Borel ω-cover U of X, there are U1, U2, . . . ∈ U such that X = liminfn Un .

Proof. Let

B = {liminfn Un : U1, U2, . . . ∈ U }↓.

It suffices to show that LI(B) = B. Let B1, B2, . . . ∈ B, and B = liminfn Bn . For each n, take
U n

1 , U n
2 , . . . ∈ U such that Bn ⊆ liminfm U n

m . Then for each n, the sets V n
m =


k≥m U n

k are
increasing to Bn , and therefore the sets V n

m ∪ (X \ Bn) are increasing to X .
Applying Proposition 2.6 to the covers Un = {V n

m ∪ (X \ Bn) : m ∈ N}, there are mn such
that X = liminfn V n

mn
∪ (X \ Bn) (since the covers are increasing, it suffices to pick one element

from each cover). As liminfn Bn = B, we have that

B ⊆ (liminfn V n
mn

∪ (X \ Bn)) ∩ B ⊆ liminfn V n
mn

⊆ liminfn U n
mn

,

and therefore B ∈ B. �

Step 4: Global to local

The following lemma and its proof are, in the open/continuous case, due to Gerlits and
Nagy [7]. Their argument also applies to the Borel case.
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Lemma 2.8. Assume that for each Borel ω-cover U of X, there are U1, U2, . . . ∈ U such that
X = liminfn Un . Then for each countable A ⊆ B(X), each f ∈ A is a pointwise limit of a
sequence of elements of A.

Proof. We may assume, by adding the function 1 − f to all considered functions, that f = 1,
the constant 1 function. For each n, let Un = {g−1

[(1 − 1/n, 1 + 1/n)] : g ∈ A}. As 1 ∈ A,
Un is a (Borel) ω-cover of X . By Theorem 2.7, there are gn ∈ A such that X = liminfn g−1

n [(1 −

1/n, 1 + 1/n)]. Then 1 = limn gn . �

This completes the proof of Theorem 2.1.

3. Baire class 1 functions (Hernańdez’s problem)

The following Theorem, which strengthens Theorem 2.1 (in the realm of perfectly normal
spaces), answers in the positive a question of Salvador Hernández.

A topological space X is perfectly normal if it is normal (any two disjoint closed sets have
disjoint neighborhoods), and each open subset of X is Fσ , that is, a union of countably many
closed subsets of X . For example, metric spaces are perfectly normal.

A function f : X → R is of Baire class 1 if f is the pointwise limit of a sequence of
continuous real-valued functions on X . Let Baire1(X) ⊆ RX denote the subspace of all Baire
class 1 functions f : X → R.

Theorem 3.1. Let X be a perfectly normal topological space. Assume that, for each countable
A ⊆ Baire1(X), each f ∈ A (closure in Baire1(X)) belongs to the closure of A under partial
limits of sequences. Then for each countable A ⊆ Baire1(X), each f ∈ A (closure in Baire1(X))
is a limit of a sequence of elements of A.

Moreover, for each countable A ⊆ B(X), each f ∈ A (closure in B(X)) is a limit of a
sequence of elements of A.

Proof. As the closure in a subspace Y of RX is equal to the intersection of the closure in RX and
Y , and Baire1(X) ⊆ B(X), it suffices to prove the second assertion. We follow the proof steps of
Theorem 2.1, and modify them when needed.

A set A ⊆ X is ∆0
2 if both A and X \ A are Fσ . The family ∆0

2(X) of all ∆0
2 subsets of X

forms an algebra of sets, that is, it is closed under finite unions and complements (and therefore
also under finite intersections and set differences). This fact is applied repeatedly when following
the steps in the proof of Theorem 2.1.

A function f : X → R is ∆0
2-measurable if for each open U ⊆ R, f −1

[U ] is ∆0
2. For each

∆0
2 set U ⊆ X , χU is ∆0

2-measurable.
The following lemma is proved for the metrizable case in [11, Lemma 24.12]. The proof there

uses only Urysohn’s lemma, which applies for all normal spaces.

Lemma 3.2 (Folklore). Let X be a normal space, and U be a ∆0
2 subset of X. Then χU is of

Baire class 1.

Proof. Let Fn ⊆ X be closed, and Gn ⊆ X be open, such that Fn ⊆ Fn+1 ⊆ U ⊆ Gn+1 ⊆ Gn
for all n, and U =


n Fn =


n Gn . By Urysohn’s lemma, there is for each n a continuous

function fn : X → R such that fn(x) = 1 for all x ∈ Fn and fn(x) = 0 for all x ∉ Gn . Then
limn fn(x) = χU (x) for all x ∈ X . �
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Thus, arguing as in Step 1 of Theorem 2.1, we have that for each countable ∆0
2ω-cover U of

X , X ∈ LI(U ).
The arguments of Step 2 show the following.

Proposition 3.3. Assume that for each countable ∆0
2ω-cover U of X, X ∈ LI(U ). Then for each

sequence U1, U2, . . . of countable ∆0
2 covers of X, there are finite sets F1 ⊆ U1, F2 ⊆ U2, . . . ,

such that for each x ∈ X, x ∈


Fn for all but finitely many n. �

In particular, as X is perfectly normal, X has the property in the conclusion of Proposition 3.3
for closed sets. We use the following strong result of Bukovský, Recław, and Repický.

Lemma 3.4 (Bukovský–Recław–Repický [1]). Let X be a perfectly normal space. Assume that
for each sequence U1, U2, . . . of countable closed covers of X, there are finite sets F1 ⊆ U1,

F2 ⊆ U2, . . . , such that for each x ∈ X, x ∈


Fn for all but finitely many n. Then the same
holds for each sequence U1, U2, . . . of Borel covers of X.

The property established in Lemma 3.4 implies that every Borel subset of X is Fσ (e.g., [20]),
and thus every Borel set is ∆0

2. By the property established before Proposition 3.3, we have that,
for each countable Borel ω-cover U of X , X ∈ LI(U ).

Thus, Theorem 2.7 and Step 4 apply, and the proof is completed. �

Remark 3.5. The proof of Theorem 3.1 shows that it suffices to assume that for each countable
set A of ∆0

2-measurable real-valued functions on X , the closure of A in the space of all ∆0
2-

measurable real-valued functions on X is contained in partlims(A).

4. Continuous functions (Gerlits–Nagy’s problem)

Thus far, we have refrained from using the notation of the field of selective properties, despite
their playing important role in the proofs. However, as we are about to make a more extensive
use of the theory, we give here the necessary introduction. Readers who wish to learn more on
the topic and its history are referred to any of its surveys [19,12,21].

Let X be a topological space. Let O(X) be the family of all open covers of X . Define the
following subfamilies of O(X): U ∈ Ω(X) if U is an ω-cover of X . U ∈ Γ (X) if U is infinite,
and each element of X is contained in all but finitely many members of U .

Some of the following statements may hold for families A and B of covers of X .
A
B


: Each element of A contains an element of B.

S1(A , B): For all U1, U2, . . . ∈ A , there are U1 ∈ U1, U2 ∈ U2, . . . such that {Un : n ∈ N}

∈ B.
Sfin(A , B): For all U1, U2, . . . ∈ A , there are finite F1 ⊆ U1, F2 ⊆ U2, . . . such that


n Fn

∈ B.
Ufin(A , B): For all U1, U2, . . . ∈ A , none containing a finite subcover, there are finite F1 ⊆

U1, F2 ⊆ U2, . . . such that {


Fn : n ∈ N} ∈ B.

We say, e.g., that X satisfies S1(O, O) if the statement S1(O(X), O(X)) holds. This way,
S1(O, O) is a property of topological spaces, and similarly for all other statements and families
of covers. Under some mild hypotheses on the considered topological spaces, each nontrivial
property among these properties, where A , B range over O,Ω ,Γ , is equivalent to one in Fig. 1,
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Fig. 1. The Scheepers diagram.

named after Scheepers in recognition of his seminal contribution to the field. In this diagram, an
arrow denotes implication.

Other types of covers, most notably Borel covers, were also considered in this context. We
say, for example, that X satisfies S1(Ω ,Ω) for Borel covers if S1(Ω(X),Ω(X)) holds, when
redefining Ω(X) to consist of all countable Borel ω-covers of X .

For clarity of notation, we identify a property with the family of topological spaces (of a
certain type, which should be clear from the context) satisfying it.

The property deduced in Proposition 2.6 is Ufin(O,Γ ) for Borel covers. For Borel covers,
Ufin(O,Γ ) = S1(Γ ,Γ ) [20], and using this the proof of Theorem 2.7 can be slightly simplified.

Gerlits and Nagy [7] proved the following lemma for Hausdorff spaces. We will see that it
holds for arbitrary topological spaces.

Lemma 4.1.


Ω
Γ


= S1(Ω ,Γ ) (for general topological spaces).

Proof. Assume that X satisfies


Ω
Γ


, and let U1, U2, . . . be open ω-covers of X . We may assume

that for each n, Un+1 refines Un .
For each n, enumerate Un = {U n

m : m ∈ N}. Let Vm = U 1
m for all m. Define

W =


n∈N

{Vn ∩ U n
m : m ∈ N}.

W is an open ω-cover of X . Thus, there are W1, W2, . . . ∈ W such that X = liminfk Wk . Fix
n. As Vn ≠ X , it is not possible that Wk ∈ {Vn ∩ U n

m : m ∈ N} for infinitely many k. Since
the sets U n

m are increasing with m, we may assume that there is at most one Wk in each set
Wn = {Vn ∩ U n

m : m ∈ N}. For each n, let rn ≥ n be the first such that there is some Wk in Wrn .
Since the covers Un get finer with n, we can pick for each n an element U n

mn
∈ Un containing the

Wk which is in Wrn . Then X = liminfk Wk ⊆ liminfn U n
mn

, and therefore liminfn U n
mn

= X . �

Using Lemma 4.1, Gerlits and Nagy proved the following fundamental local-to-global corre-
spondence result.

Theorem 4.2 (Gerlits–Nagy [7]). For Tychonoff spaces X, the following properties are equiva-
lent:

(1) For each A ⊆ C(X), each f ∈ A is a limit of a sequence of elements of A (i.e., C(X) is
Fréchet–Urysohn).

(2) X satisfies


Ω
Γ


.
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We establish a similar result for the other major property studied in the present paper. To this
end, we need the following definition and a lemma.

Definition 4.3. L(X) is the family of open covers of X such that X ∈ LI(U ).

Theorem 2.7 tells that


Ω
L


=


Ω
Γ


for Borel covers. In particular, using that


Ω
Γ


= S1

(Ω ,Γ ) for Borel covers, we have that


Ω
L


= S1(Ω , L) for Borel covers. The last assertion also

holds in the open case, but a different proof is required.

Lemma 4.4.


Ω
L


= S1(Ω , L) = Sfin(Ω , L).

Proof. As S1(Ω , L) implies Sfin(Ω , L), which in turn implies


Ω
L


, it remains to prove that

Ω
L


implies S1(Ω , L). To this end, it suffices to prove that


Ω
L


implies S1(Ω ,Ω). S1(Ω ,Ω)

is equivalent to having all finite powers of X satisfy S1(O, O) [18]. Gerlits and Nagy [7] proved

that


Ω
L


implies S1(O, O). Thus, it remains to prove that


Ω
L


is preserved by finite powers.

Assume that X satisfies


Ω
L


, and let k ∈ N. Let U be an open ω-cover of X k . Then there is an

open ω-cover V of X such that V ′
= {V k

: V ∈ V} refines U [10]. Then X ∈ LI(V). For arbitrary
sets B1, B2, . . . , liminfn(Bn)k

= (liminfn Bn)k . Thus, X k
∈ {Bk

: B ∈ LI(V)} = LI(V ′), and
therefore X k

∈ LI(U ). �

Theorem 4.5. For Tychonoff spaces X, the following properties are equivalent:

(1) For each A ⊆ C(X), A ⊆ partlims(A).

(2) X satisfies


Ω
L


(that is, for each open ω-cover U of X, X ∈ LI(U )).

Proof. (1 ⇒ 2) For partial functions f and g, g ◦ f is the partial function with domain
{x ∈ dom( f ) : f (x) ∈ dom(g)}, defined as usual by g ◦ f (x) = g( f (x)).

For a surjection ϕ : X → Y and partial functions fn : Y → R, the domain of limn( fn ◦ ϕ) is
ϕ−1

[dom(limn fn)], and limn( fn ◦ ϕ) = (limn fn) ◦ ϕ. Thus, we have the following.

Lemma 4.6. Assume that for each A ⊆ C(X), each A ⊆ partlims(A). Then every continuous
image of X has the same property. �

A topological space is zero-dimensional if its clopen (simultaneously closed and open) sets
form a base for its topology. An argument similar to one in [7] gives the following.

Lemma 4.7. Let X be a Tychonoff space. Assume that for each A ⊆ C(X), each f ∈ A belongs
to the closure of A under partial limits of sequences. Then X is zero-dimensional.

Proof. It suffices to prove that [0, 1] is not a continuous image of X . Indeed, for each open
U ⊆ X and each a ∈ U , let Ψ : X → [0, 1] be continuous, such that Ψ(a) = 0 and Ψ(x) = 1
for all x ∈ X \ U . Take r ∈ [0, 1] which is not in the image of Ψ . Then Ψ−1

[[0, r)] is a clopen
neighborhood of x contained in U .

Assume that [0, 1] is a continuous image of X . Let A ⊆ C([0, 1]) be the set of all continuous
f : [0, 1] → [0, 1] such that the Lebesgue measure of f −1

[(1/2, 1]] is at most 1/2. Then 1 is in
the closure of A. Let C be the set of all partial f : [0, 1] → [0, 1] such that f −1

[(1/2, 1]]

is Lebesgue measurable, and its measure is at most 1/2. C is closed under partial limits of
sequences and contains A, but 1 ∉ C ; a contradiction. �
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Let U be an open ω-cover of X . As X is zero-dimensional, U can be refined to a clopen
ω-cover of X by replacing each U ∈ U with all finite unions of clopen subsets of U . Now, for
each clopen U the function χU is continuous, and 1 is in the closure of {χU : U ∈ U }. By (1), 1
is in the closure of {χU : U ∈ U } under partial limits of sequences. Continue as in the proof of
Lemma 2.4.

(2 ⇒ 1) In (1), by adding 1 − f to all of the involved partial functions, it suffices to consider
the case f = 1. Let A ⊆ C(X), and assume that 1 ∈ A. For each n, let Un = { f −1

[(1 − 1/n,

1 + 1/n)] : f ∈ A}. Un is an open ω-cover of X . By Lemma 4.4, there are f1, f2, . . . ∈ A such
that X ∈ LI({ f −1

n [(1 − 1/n, 1 + 1/n)] : n ∈ N}).
We claim that

A = ({ f −1
n [(1 − 1/n, 1 + 1/n)] : n ∈ N} ∪ { f −1(1) : f ∈ partlims(A)})↓

is closed under the operator liminf. Indeed, assume that we are given a sequence of elements of
A. By thinning it out, and replacing each element by an appropriate element containing it, we
may assume that this sequence is all in { f −1

n [(1 − 1/n, 1 + 1/n)] : n ∈ N} or all in { f −1(1) :

f ∈ partlims(A)}. In the first case, by thinning out further we may assume that the sequence is
either constant (in which case we are done), or consists of distinct elements f −1

mn
[(1 − 1/mn, 1 +

1/mn)] with mn increasing. In this case, let f = limn fmn . For each x ∈ liminfn f −1
mn

[(1 −

1/mn, 1 + 1/mn)], f (x) = limn fmn (x) = 1, and thus liminfn f −1
mn

[(1 − 1/mn, 1 + 1/mn)] is in
A. The second case is similar (and slightly easier).

Thus, X ∈ A, which means that there is f ∈ partlims(A) such that X = f −1(1), that is,
1 = f ∈ partlims(A). �

Clearly,


Ω
Γ


implies


Ω
L


. The original Gerlits–Nagy Problem, posed in [7], asks whether

these properties are in fact equivalent (for Tychonoff X , or even for X ⊆ R). Theorems 4.2 and
4.5 justify the reformulation given in Problem 1.5.

Originally, Gerlits and Nagy [7] studied five properties, numbered α, β, γ, δ, ϵ, where each

property implies the subsequent one.


Ω
Γ


and


Ω
L


were numbered γ and δ, respectively, and

are often named accordingly in the literature. Their problem was originally stated as whether
property δ implies (and is therefore equivalent to) property γ .

A topological space X is said to satisfy a property P hereditarily if each Y ⊆ X satisfies
P . Pushing our methods further, we can solve the Gerlits–Nagy Problem in the affirmative for
spaces X satisfying S1(Γ ,Γ ) hereditarily. We will use the following result of Francis Jordan [9]
(see also [16]), proved using a new fusion argument of his.

Lemma 4.8 (Jordan). Let B =


n Bn ⊆ X be an increasing union, where each Bn satisfies
S1(Γ ,Γ ). For all open sets U n

m ⊆ X, n, m ∈ N, with Bn ⊆ liminfm U n
m for each n, there are

m1, m2, . . . ∈ N such that B ⊆ liminfn U n
mn

.

Theorem 4.9. For topological spaces X satisfying S1(Γ ,Γ ) hereditarily, the following are
equivalent:

(1) X satisfies


Ω
L


.

(2) X satisfies


Ω
Γ


.

Proof of (1) ⇒ (2). Lemma 4.10. Assume that X satisfies S1(Γ ,Γ ) hereditarily. Then X

satisfies


L
Γ


.
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Proof. Let U be an open cover of X with X ∈ LI(U ). Define

B = {liminfn Un : U1, U2, . . . ∈ U }.

We will prove that X ∈ B. To this end, it suffices to show that LI(B↓) = B↓.
Let B1, B2, . . . ∈ B↓, and B = liminfn Bn . Replacing each Bn with


m≥n Bm , we may as-

sume that B1 ⊆ B2 ⊆ . . . , and


n Bn = B. For each n, take U n
1 , U n

2 , . . . ∈ U such that
Bn ⊆ liminfm U n

m . By the premise of the proposition, each Bn satisfies S1(Γ ,Γ ). By Jor-
dan’s Lemma 4.8, there are m1, m2, . . . ∈ N such that B ⊆n liminfn U n

mn
∈ B↓, and therefore

B ∈ B↓. �

It remains to note that the conjunction of


L
Γ


and


Ω
L


implies


Ω
Γ


. �

Remark 4.11. For each topological space X , Γ (X) ⊆ L(X) ⊆ Ω(X). To see the second
inclusion, assume that there is a finite F ⊆ X not covered by any U ∈ U . Then F is not
covered by any element of LI(U ), and in particular, X ∉ LI(U ). Thus, the implication at the end

of the proof of Theorem 4.9 is in fact an equivalence, that is,


Ω
L


∩


L
Γ


=


Ω
Γ


.

Corollary 4.12. For Tychonoff spaces X satisfying S1(Γ ,Γ ), the following are equivalent:

(1) X satisfies


Ω
L


hereditarily.

(2) X satisfies


Ω
Γ


hereditarily.

Proof of (1) ⇒ (2). By Theorem 4.9, it suffices to prove that X satisfies S1(Γ ,Γ ) hereditarily.
Nowik, Scheepers and Weiss proved that


Ω
L


implies Ufin(O,Γ ) [15].2 Thus, if X satisfies

Ω
L


hereditarily, then X satisfies Ufin(O,Γ ) hereditarily. Fremlin and Miller [4] proved that in

the latter case, X is a σ -space, that is, each Borel subset of X is Fσ . This, together with X ’s
satisfying S1(Γ ,Γ ), implies that X satisfies S1(Γ ,Γ ) hereditarily [8,16]. �

Remark 4.13. The argument in the proof of Corollary 4.12 shows that, for Tychonoff σ -spaces

X ,


Ω
Γ


=


Ω
L


∩S1(Γ ,Γ ). In this case, this joint property coincides with its hereditary version.

Assuming that the answer to the Gerlits–Nagy Problem is negative, the results of this section
explain, to some extent, why no counter example was discovered thus far. A natural strategy

would be to begin with a set X ⊆ R satisfying


Ω
Γ


, and then look for a subset of X , in

a way which “destroys”


Ω
Γ


, but not too much, so that


Ω
L


still holds. There are several

constructions of subsets of R satisfying


Ω
Γ


. The first one is due to Galvin and Miller [5].

Here, X has a countable subset Q such that X \ Q does not satisfy


Ω
Γ


. Unfortunately, X \ Q

does not even satisfy Ufin(O,Γ ), and in particular not


Ω
L


.3 Another, substantially different,

construction is due to Todorčevic [5], but this X satisfies


Ω
Γ


hereditarily. Finally, using a

2 For a direct proof, see the proof of Proposition 2.6.
3 On the other hand, we proved in [16] that any “natural” change of Galvin and Miller’s construction without moving

to a subset at the end would keep X in

Ω
Γ


.
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variation of Todorčevic’s method, Miller [13] constructed X ⊆ R satisfying


Ω
Γ


for Borel

covers, and a subset Y of X not satisfying


Ω
Γ


.


Ω
Γ


for Borel covers, implies S1(Γ ,Γ ) for

Borel covers, which is hereditary. Thus, in this case X satisfies S1(Γ ,Γ ) hereditarily, and by

Theorem 4.9 no subset of X would separate


Ω
L


from


Ω
Γ


.

We conclude this section with a local reformulation of Theorem 4.9. A topological space Z
has the Arhangel’skiı̆ property α2 if, for each z ∈ Z , whenever limm zn

m = z for all n, there are
m1, m2, . . . such that limn zn

mn
= z. When Z = C(X), we can take z = 1 in the definition. Haleš

proved that, for perfectly normal spaces X , the following properties are equivalent:

(1) For each Y ⊆ X , C(Y ) is an α2 space.
(2) X satisfies S1(Γ ,Γ ) hereditarily.

Collecting together the results of this section, we have the following.

Theorem 4.14. Let X be a perfectly normal space, such that for each Y ⊆ X, C(Y ) is an α2
space. Then the following properties are equivalent:

(1) For each A ⊆ C(X), A ⊆ partlims(A).
(2) For each A ⊆ C(X), each f ∈ A is a limit of a sequence of elements of A (i.e., C(X) is

Fréchet–Urysohn). �

5. Some results about the missing piece

The property


L
Γ


was central, implicitly or explicitly, in our proofs, for the basic reason that

Ω
Γ


=


Ω
L


∩


L
Γ


.

To prove that


Ω
Γ


=


Ω
L


(the Gerlits–Nagy Problem), it is necessary and sufficient to prove

that


Ω
L


implies


L
Γ


. We therefore describe some fundamental properties of


L
Γ


, and the

ensuing open problems concerning it.

Proposition 5.1.


L
Γ


= S1(L,Γ ) = Sfin(L,Γ ). In particular,


L
Γ


implies S1(Γ ,Γ ).

Proof. It suffices to prove the last assertion. Assume that for each n, Un = {U n
m : m ∈ N} ∈

Γ (X). We may assume that the covers Un get finer with n.4

Let Vm = U 1
m for all m. Define

W =


n∈N

{Vn ∩ U n
m : m ∈ N}.

Then

liminfn liminfm(Vn ∩ U n
m) = liminfn Vn = X,

and therefore X ∈ LI(W). By


L
Γ


, there are W1, W2, . . . ∈ U such that X = liminfk Wk . Fix

n. As Vn ≠ X , it is not possible that Wk ∈ {Vn ∩ U n
m : m ∈ N} for infinitely many k. Thus, by

4 If {Un : n ∈ N}, {Vn : n ∈ N} ∈ Γ (X), then {Un ∩ Vn : n ∈ N} ∈ Γ (X) and is finer than both.
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thinning out the sequence Wk if needed, we may assume that there is at most one Wk in each set
{Vn ∩ U n

m : m ∈ N}. Since the covers Un get finer with n, we can pick for each n an element
U n

mn
∈ Un , such that X = liminfn U n

mn
. �

Proposition 5.2. The property of satisfying S1(Γ ,Γ ) hereditarily is strictly stronger than


L
Γ


.

Proof. Lemma 4.10 tells that hereditarily-S1(Γ ,Γ ) implies


L
Γ


. Assuming for example the

Continuum Hypothesis, there is X ⊆ R and a subset Y of X such that X satisfies


Ω
Γ




and thus also


L
Γ


, and Y does not even satisfy Sfin(O, O), and in particular not S1(Γ ,Γ )

[5]. Apply Proposition 5.1. �

If S1(Γ ,Γ ) implies


L
Γ


, then the word “hereditarily” can be removed from Theorem 4.9.

However, we suspect that this is not the case.

Conjecture 5.3.


L
Γ


is strictly stronger than S1(Γ ,Γ ).

To prove this conjecture, it suffices to construct (say using the Continuum Hypothesis) sets

X, Y ⊆ R satisfying


L
Γ


, such that X ∪Y does not satisfy


L
Γ


, because S1(Γ ,Γ ) is σ -additive.

Problem 5.4. Is


L
Γ


preserved by finite unions?

If it is, then


L
Γ


is in fact σ -additive, because of the following.

Proposition 5.5.


L
Γ


is linearly σ -additive, that is, is preserved by countable increasing

unions.

Proof. Assume that X1 ⊆ X2 ⊆ . . . all satisfy


L
Γ


,


n Xn = X , and X ∈ LI(U ). Then for each

n, Xn ∈ LI({U ∩ Xn : U ∈ U }), and thus there are U n
m ∈ U , m ∈ N, such that Xn ⊆ liminfm U n

m .
By Jordan’s Lemma 4.8, there are m1, m2, . . . ∈ N such that X = liminfn U n

mn
. �

The proofs of the above results are also valid in the case of Borel covers, and since S1(Γ ,Γ )

for Borel covers is hereditary, we have the following.

Corollary 5.6. For Borel covers,


L
Γ


= S1(Γ ,Γ ). �

Thus, none of the above-mentioned problems remains open in the Borel case.

We conclude with a local characterization of


L
Γ


.

Theorem 5.7. For perfectly normal spaces X, the following are equivalent.

(1) For each A ⊆ C(X) each f ∈ C(X) ∩ partlims(A) is a limit of a sequence of elements of A.

(2) X satisfies


L
Γ


.

Proof. (1 ⇒ 2)

Lemma 5.8. Let X be a perfectly normal space. Assume that for each A ⊆ C(X), each f ∈

C(X) ∩ partlims(A) is a limit of a sequence of elements of A. Then each element of L(X) has a
clopen refinement in L(X).
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Proof. Indeed, this follows from a formally weaker property: Let P be the property that, for each
A ⊆ C(X), each f in the closure of A in C(X) under limits of sequences, is a limit of a sequence
of elements of A.

Fremlin [3] proved that P is equivalent to the property named wQN in [1], where it is shown
that for perfectly normal spaces, wQN implies that each open set is a countable union of clopen
sets [1, Corollary 4.6].

Now, let U ∈ L(X). For each U ∈ U , present U as an increasing union U =


n Cn(U ) of
clopen sets. Then U = liminfn Cn(U ). Let V = {Cn(U ) : U ∈ U , n ∈ N}. Then V is a clopen
refinement of U , and X ∈ LI(U ) ⊆ LI(V), that is, V ∈ L(X). �

Let U ∈ L(X). By Lemma 5.8, we may assume that the elements of U are clopen. Let
A = {χU : U ∈ U }. A ⊆ C(X). Let V = { f −1(1) : f ∈ partlims(A)}. U ⊆ V , and V is closed
under the operator liminf. Indeed, Let f1, f2, . . . ∈ partlims(A), and B = liminfn f −1

n (1). As
f = limn fn ∈ partlims(A), B = f −1(1) ∈ V .

Thus, X ∈ V , and therefore 1 ∈ partlims(A). By (1), there are Un ∈ U such that limn χUn = 1,
that is, liminfn Un = X .

(2 ⇒ 1) Assume that 1 ∈ partlims(A). For each n, let Un = { f −1
[(1 − 1/n, 1 + 1/n)] : f ∈

A}. Un ∈ L(X). Indeed, let C be the family of all partial f : X → R, such that f −1
[(1 − 1/n,

1+1/n)] ∈ LI(Un). Then A ⊆ C , and C is closed under partial limits of sequences. Thus, 1 ∈ C ,
that is, X = 1−1

[(1 − 1/n, 1 + 1/n)] ∈ LI(Un).
By Proposition 5.1, there are f1, f2, . . . ∈ A such that liminfn f −1

n [(1 − 1/n, 1 + 1/n)] = X .
In particular, limn fn = 1. �

The notation used below is available, e.g., in the survey [21].

Proposition 5.9. The minimal cardinality of a set X ⊆ R such that X does not satisfy


L
Γ


is b (the minimal cardinality of a subset of NN which is not bounded, with respect to eventual
dominance).

Proof. If |X | < b, then X satisfies S1(Γ ,Γ ) [10]. Thus, X satisfies S1(Γ ,Γ ) hereditarily, and

by Lemma 4.10, X satisfies


L
Γ


. On the other hand, there is X ⊆ R with |X | = b, such that X

does not satisfy S1(Γ ,Γ ) [10]. By Proposition 5.1, this X does not satisfy


L
Γ


. �

The proof of the main theorem in [16], with trivial modifications, gives the first item of the
following theorem. The other items are easy consequences.

Theorem 5.10. (1) For each unbounded tower T of cardinality b in [N]
∞, T ∪ [N]

<∞ satisfies
L
Γ


.

(2) If t = b, then there are subsets of R of cardinality b, satisfying


L
Γ


.

(3) There are subsets of R of cardinality t, satisfying


L
Γ


. �

The assumption t = b is known to be strictly weaker than the Continuum Hypothesis or even
Martin’s Axiom, but it is open whether it is weaker than p = b, which implies that the sets

mentioned in Theorem 5.10 actually have the stronger property


Ω
Γ


[16].
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