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Abstract

It is consistent (relative to ZFC) that each union of ftax} many families in the Baire space» which are not finitely
dominating is not dominating. In particular, it is consistent that for each nonprincipal ultréfiltére cofinality of the reduced
ultrapower®w /U is greater than maf, g}. Themodel is constructed by oracle chain condition forcing, to which we give a self-
contained introduction.
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1. Introduction

The undefined terminology used in this paper is a®Qig][ A family Y C “w is finitely dominatingif for each
g € “w there exisk and f1, ..., fx € Y suchthatg(n) < max fi1(n), ..., fx(n)} for all but finitely manyn. The
addtivity numberfor classes®)) € 3 € P(“w) with | JY &€ 3 is

add(, 3) = min{I51: § < Y and | J§ ¢ 3}

Let © (respectively,Dsin) be the cokction of all subsets ofw which are not dominating (respectively, finitely
dominating). Define

cov(®@hin) = min I3 : § < Dpn and | J§ = o} .
Itis easy to see thatdd(Dsin, ®) = cov(Dsin), SO we Wil use this shorter notation.
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In [8] itis pointed out that
max(b, g} < cov(Dsin),

the inequalityb < cov(®sn) beng immediate from the definitions, and the inequalitx cov(Dsin) having been
implicitly proved in [5, Theorem 2.2]. (For the reader’s convenience, we give a short proof for tiisinllary 2.3)

In [8] it is shown thatin all “standard forcing extensions (e.g., those appearingdndection 11]), equality holds. It

is conjectured in§] that this equality is not provable. We prove this conjecture. In fact, we prove a stronger result:
Let M denote the ideal of meager sets of real numbers.

Theorem 1.1. It is congstent (relative to ZFC) thak1 = non(M) = g < cov(Dsin) = cov(M) = ¢ = Ro.

The statement ofheorem 1.-determines the values of almost all standard cardinal characteristics of the continuum
in the model witnessing it: IfV" is the ideal of null sets of real numbers, then by provable inequalities 98 [
we have thab, t, §, add(N), add(M), b, 5, cov(N), andnon(M) are all equal t&¥1, andcov(M), non(N), t, 0,
u, i, cof(M), andcof(N) are all equal t&; in this model.
In [8] itis shown that for each nonprincipal ultrafiltéh on w, cov(Dsin) < cof(Cw/U).

Corollary 1.2. It is consistent (relative to ZFC) that for each nonprincipal ultrafilter on », maxb, g} <
cof(®w/U).

This corollary partially extends the closely related Theorems 3.1 and 3.4,0flich are proved using the same
machinery: Oracle chain condition forcing.

2. Making cov(®jin) and cov(M) large

Fromnow on, byultrafilter we always mean a nonprincipal ultrafilter an We will use the following convenient
characterization. For functions g € “w and an ultrafiltet/ we write f <z, gfor {n: f(n) < g(n)} e U.

Lemma 2.1 ([8]). For each @ardinal number, the fdlowing are equivalent:

(1) ¥ < cov(Dsin);
(2) For eachk-sequencé(Uy, 0y) : @ < k) with eachl4, an ultrafilter and each g € “w there exists ¢g¢ “w such
that for eachy < «, 9o <y, 0.

We first show how this characterization easily implies an assertion made in the introduction.
Definition 2.2. For A € [w]®, define tke functionA™ € ®w by AT(n) = minfk € A: n <k} forall n.
Corollary 2.3 ([9]). g < cov(Dfin).

Proof. We useLemma 2.1 Assume that < g, and(U,, 9x), @ < «, are given with eacldf/, an ultrafilter and each
O« € “w. We must Bow that there existg € “w such that for eaclr < «, go <z, 9. We will use the following
“morphism”.

Lemma 2.4. For each f € “w and each ultrafilteis,
Gut ={Aclw]®: f <y AT}
is groupwise dense.

Proof. Clearly,G,, 1 is closed under taking almost subsets. Assumeffl@at an+1) : N € w} is an interval partition
of w. By merging consecutive intervals we may assume that for agahd eactk € [a,, an+1), f(K) < any2.
Sincel{ is an ultrafilter, there exists € {0, 1, 2} suchthat

Ac = lagnie, aanser1) €U

n

Take A = A2 mod 3 For eachk € Ay, letn be such thak € [azni¢, agnier1). Then f(K) < agnier2 = AT(K).
ThusAe Gy s. O
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Thus, we can také € (N, _, Giy,.q, @andg = AT, O

How are we going force a large value foov(®sin)? If cov(Dsin) = R1, then byLemma 2.1this is witnessed by
a sguence((Uy, 9y) : « < N1). To refute a sigle such witness, we will use the following forcing notion, where
Ay € U, for eacha < R1.

Definition 2.5. Fix an ordinaly. Assume that\, € [@]® andg, € “w for « < y. Define a forchg notion
Q=Q(As.Gu:a <y)={(Nh,F):necwhe o F ey},

with (ng, hy, F1) < (N2, hz, F2) if ng <ng,hz [ ny=hy, F1 € Fp, and

(Vo € F1)(Vn € [n1, n2) N Ag) Gu(N) < h2(n).

Observe thaf) is o-centeredQ is a restricted variant of the Hechler éimg. Advanced readers are recommended
to skip the proof of the following lemma, which is the same as for the Hechler forcing.

Lemma2.6. Assume that A € [w]” NV and g, € Yo NV foreacha < y. ThenforQ = Q(Ay, Qo : @ < y),
VO (3g € “o) (Yo < ) Ay S (N gu(n) < g}

Proof. Assume thaG is aQ-generic fiter overV. Letg = | J 72[G], wherenz denotes the projection on the second
coordinate. Clearlyy is a partial function fromw to w. By dengty arguments, we have thgtis as rguired. To see
this, consider first the sets

Dm={(n,h,F)eQ: m<n}

for m € w. Each Dy, is dense inQ: Assume thatn, h, F) € Q. If m < nthen[n, m) = @; therdore (n,h, F) <
(n, h, F U{a}) € Dm. Otherwse, defind’ : m — w by h'(k) = h(k) for k < n, andh’(k) = max{ fg(k) : g € F}
for k € [n,m). Then(m, h’, F) is a member oDy, , extending (n, h, F). Thedensity of the set®, implies that
dom(g) = w. Moreover, for eacky < y the set

Eo ={(n,h,F) eQ:a e F}

is dense inQ (for each condition(n, h, F), (n,h, F U {«}) is a stronger condition which belongs ). Now fix
a < y and choose an elemem, hg, Fg) € GNE,. Foreacm € A,\ng choose an elemefms, h, F1) € GNDpy1,
and a common extensidny, ho, F2) of (ng, hg, Fo) and(n1, h1, F1). Asa € Fgandn € [ng, n2) N A, we have that
0« (N) < g(n). Since this holds for each > ng, we have thatA, C* {n: g,(n) < g(n)}. O

Consequently, doing an iteration of forcing notions with the above forcing used cofinally ofteny witkk1 and an
appropriate book-keeping, will increasev(®sin). We will be moreprecise in the proof ofheorem 2.9

Observe thithe setsA, played no special role and in fact we could takge = » for eachu (in this case we obtain
adominating real). However, this freedom to chodgewill play a crucial role in the following, where we would like
to make sure that (or non(M)) andg remain small wie we increaseov(Dsin).

We now make sme easy observations concerning our planned forcing. We will construct our model by a finite
support iteration(P,, Q, : o < RNp) of c.c.c. forcing notiong), which add reals for cofinally many < Ro.
Consequently ¥ satisfies: > 8, whereP = Py, = Ua<N2 P,. The model V we begin with will satisfilV = L (in
fact,<>;§l andogz(sf), with Sf = {o < Ny : cf() = N1}, ae enough). Consequent, satisfiesP| = 8y = 281,

SinceP satisfies the c.c., (nice)P-names for reals are countable and therefore there are atjBidst= 28 = R,
names for reals i, soVF = ¢ = 8.

Since we are using a finite support iteration, Cohen reals are introduced cofinally often along the iteration, and thi
is well known to implycov(M) > R in the final model (briefly: Each meagset in the fil model is contained in
an F,, and hus Borel, meager set. Each Borel set is coded by a real, and every real appears atra<stageso
Cohen reals added later will not belong to the Borel meager set which is the interpretation of this code, and since thi
property is absolute, they will not belong to the interpretation in the final model. 8iniseregular, the codes fary
many Borel meager sets all appear at an intermediate stagheir union does not contain Cohen reals added later).

Corollary 2.7. In the final modelcov(M) = ¢ = Kz holds.
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Now we shav how to impose some more constraints on our iteratip, Q, : @ < N2) so that inVPs2,
cov(Diin) = V2. Our exposition follows closely the treatment of names givern |

Choice2.8. We fix aONZ(Sf)-sequenceS; 18 € Sf) in the gound model. The idea is that stationarily oftgnwill
guess a function

f i (R1 x R2) UR1 — ([R2]=0)M0, 1)

(So for eachs < Ry of cofinality 81, § : (N1 x §) URy — ([5]=N0)%0))
We idertify &, with the partial ordePy, weare about to build. Thefk>]=N° contains all of the maximal antichains.
Thus([®2]="0)® contains a name for each subsetofwhich corresponds to an element“a$). Now any sequence

(Uy, 9g) 1 @ < R7)

in the extension has a ground model functidn: (81 x 8p) U R — ([R2]=80)Ro, such hat f («) is a name foig,
and f («, -) is a name for an enumeration of the elementd of
For eachf asin Eq. {),

8eS:S="118

is stationary ifk2. We will inductively define aik,-stage finite support iteration and an injection functign Ps —
N2 for § < R suwch that the range of eadks is an initial segment oRky which indudess, and fore < § < Rp,
F. C Fs.

Fors < o we will denote by nam&) the seuence o sets ofrealsl{, and ofX; realsg, of the form

<<{U{“} x By i (S ))& <8¢, (i) x Fgl(ssm)(n))) ta < m>.

new new

At stages$ € Sf in the construction, if-p, “nameg) is a sguence oy ultrafilters andX; functions”, then we
can takePs-namesA,, o < 81, such hatl-p, A, € (Uy) I 8, whichmeanskp, “ A, is in the first component of

name€s;)”.
Theorem 2.9. LetV = <>R2(Sf) and letPy, be any forcing as ifChoice2.8. Then V%2 = cov(@fin) = No.

Proof. If IFpy, “(Uy, 9e) : @ < N1) is a sequence of functions and ultrafilters”, then at club many stages

restriction of the names tb is also forced to be a sequence of ultrafilterd/ifé. For a ppof of this (even in the
countable support proper scenario) sHeBut the restriction of the name tois guessed pname ) for stationarily
manys’s in this club. So at such a stagehe forcing Qs adds a functiom suchthatg, <z, hforalla < X1 and this
shows thathie sequence was not a witnessdov(Dsin) = 8. O

3. Interlude: Oracle chain condition forcing

Usually, the major difficulty in forcing inequalities betweesmbinatorial cardinal chacteristics of the continuum
is to make sure that those which are required to be smaltar((M) andg in our case) do indeed remain small in
the generic extension. In this section we describe one such method, which is suitable for our purposes: Oracle chair
condition forcing p, Chapter V] (see also3,4]).

Oracle chain condition forcing is a method for forcing with-stage finite support iteration, in such a way that
some presribed intersections df; many (descriptively nice3ets which are emptin an intermedite model remain
empty in the final model.

Definition 3.1. An oracle (or 81-oracle) is a sguenceM = (Ms : § limit < X1) of countable transitive models of a
sufficiently large finite portion of ZFC (henceforth denoted ZF,Guch that for each, § € M; is countable inMs,
and for eachA C 81, the set

Trapy (A) = {8 < 8y : dis alimit ordinal, andA N § € M}

is a stationey subset oR;.
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Clearly,< implies the existence of an oracle. The sets Jy6fs) generate alier Trapy, which isnormal and proper.
Moreover, for eachh, B C Ry, thereexigs C C R such that Trapy; (C) = Trapg (A) N Trapy (B).

Notation 3.2. Assume thaP C Q are forcing notions, andll is a set. The® <y Q means: Every predense subset
of P which belongs toN is predense if).

Lemma3.3. (1) <y is transitive.
(2) If N € N/, thenP <n Q impliesP <y Q.
BIfQ= Ua<,3 QY andP <N Q~ for eacha, thenP <y Q. O

Definition 3.4. Assume thatM is an oracle. A forcing notiofP satisfies theM-chain condtion if there exists an
injection: : P — V1, such hat
gl

{6 <Ry :disalimitordinal, and™[8] <m,, P} € Trapy,

whereM;,, = ("1[A] : AC § andA e M;).

Thus each countable forcing notion satisfiesth&hain condition, and IP satisfies thév-chain condition, thei®
has the c.c.c., an@®| < ®;. Theddinition of the M-chan condition can be extended to forcing notions of cardinality
N2 [6, IV.1.5]; however this is not needed here.

Proving theM-chain condition according tBefinition 3.4is rather inconvenient. We give a useful method for
verifying the M-chain condition.

Proposition 3.5. Assume thaM is an oracle,P = J, _y, P¢, for eacha < Ry, ¢, is a bijection fromP* onto a
countable ordinal, andN,, : @ < R1) is a sequence of countable transitive models of ZFRDch hat the following
conditions hold:

(1) Foreacha < B < R,
(a) P < PP with PA \ P* countably infinite,
(b) t« S 1g,and
() Ny, € Ng.
(2) For each (large enoughy < N1,
(@) g : P* > wa is bijective,
(b) Mye, (P¥, <pe), 1y € Ny, and
(c) P* <, P+l

ThenP satisfies theM-chain condition.

Proof. UsingLemma 3.3we get by induction orpg that for eachr < g < X1, P* <y, PP, In paticular,P* <y, P
for eache. Definer = [, _y, te- Thene: P — Ry is an injection.
Assume thad < X1 is a (arge enough) limit ordinal, and le& be such that = wa. Then

TS = T Hwa] = G wa] = PY

Assume thatA C 8, A € My, andc"Y[A] = (;1[A] is predense iP*. As i, € Ny, (;1[A] € Ny. ASP* <y, P,
7 1[A] is predense ifP.

This shows that foall (large enough) limit ordinals < 81, :~1[5] <m;, P. Obviously, this implies the requirement
in Definition 3.4 O

Proposition 3.5jives us a recipe for verifying thid-chain condition: Construdt by inductively constructing?,
such trat (1)(a) holds. 18 is a limit, takeP? = U(Kﬁ P¢. Otherwise8 = « + 1 andP* is defined Then here ejists
tg sweh that (1)(b) and (2)(a) hold. Choobk as in (1)(c) and (2)(b) (and containing some other elements if needed),
and useN, to defineP**?1 such that (2)(c) holds (this is the only tricky part in the construction). We can simplify the
last step in this recipe a bit further.

Lemma 3.6. Assume that N is a transitive model of ZEGud that (P, <p) € N. Then:P <y Q if, and only if,
each open dense subseffofvhich belongs to N is predense @.
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Proof. We reed to prove<). Assume that € N is predense i®. Thenl* ={peP:(3gel)p>q} € N, and
is open and dense iB. Thus,| * is predense i), and theeforel is predense i) as well. O

Corollary 3.7. (2)(c)in Proposition3.5can be replaced by:
(2)(c) Each open dense subset®fwhich belongs to N is predense i+,

The following theorem exhibits the importance of the oracle chain condition for a single step forcing.

Theorem 3.8 ([6, IV.2.1]). Assume that V= <, and ¢4 (X), @ < ®j, are H21 formulas' (possibly with real
parameters), and

V E = (3X) (Yo < R1) ¢a(X).

If this continues to hold when we add a Calreal to V, the there exits anoracle M such hat for each forcing
notion PP satisfying theM-chain condition, V¥ = — (3x) (Vo < 81) @g(X).

The following consequence can be derived froheorem 3.8

Lemma3.9 ([6, IV.2.2]). Assume that> holds in V. There is an oracl®l in V such hat for eachP satisfying the
M-c.c., if, in V, A is a nonmeager set of reals, then A is nonmeagefirCgnsequently, ¥ = non(M) = 8.

Oracle chain condition can (and is intended to) be used with finite support iterations.

Lemma 3.10 ([6, 1V:3.2-3.3). Assume thaM is an oracle.

(1) For a finite support iteration(Py, Qu : o« < y), if eachP, satisfies the M-chain condition, then so does
PV = Ua<y P _ _

(2) If [P = Rq, and P satisfies the M-chain condtion (in V), then in \F there is an oracleM* such hat for each
Q e VP satisfying theM*-chain conditionP Q satisfies theM-chain condtion (in V).

Consider a finite support iteratiof®,, Qo 1 a < V) of forcing notions, and leP = Ua<N2 P,. Assume that
we wish to useéTheorem 3.8or P. Then byLemma 3.1Q1), it suffices to make sure that eaBh satisfies theMi-
chain condition. ByLemma 3.1(2), this amounts to choosing ea@ly in such a way that it satisfies the oracle chain
condition for the oraclé* corresponding to the orac given inTheorem 3.8or P,.

The nice thing is that we need not worry what exactlgsh oracles are, as long as we can make sure that for
any prescribed oracl®, the facing notion Q, used inthe iteration can be chosen so that it satisfiesNhehain
condition.

We soméimes have to make more than one oracle commitniarfact, we may wish to add new commitments
cofinally often along the iteration (indeed, we do that in the prodfteforem 5.1)L This can be achieved by coding
all of the oracles of interest (those introduced in earlier stages of the iteration as well as the new ones required ir
the current iteration) in a single oraclSince the length of the iteration®¥s, the fdlowing lemma tells that this is
possible.

Lemma3.11 ([6, IV.3.1]). If My, o < Ry, are orcles in V, then there exists a single orablesuch hat for eachP
satisfying theM-chain condition P satisfies theM,,-chain condtion for eacha.

4. Keeping non(M) small

The main lemma needed to carry out our constructions is the following.

Lemma4.1. Assume thaM is an oracleand for eachr < X1, U, is an ultrafilter a_nd @ € “w. Then here exist sets
Ay € Uy, o < R, sud thatQ = Q(Ay, dy : o < R1) (Definition2.5) sdisfies theM-chain condition.

1That is, formdas of he form(va e R) (Gb e R) ¢, wherey € Ly xg (Liy,xg iS the extension of the first order language by allowing
countable conjunctions).
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Proof. We useProposition 3.5and the remarks following it (witf? replaced byQ everywhere). We choosA,, by
induction onx. At stagex we define

Q¥ =Q(Ag,95: B <)

(so atthe end) = Ua<N1 Q% and (1)(a) is guaranteed) andas in (1)(b) and (2)(a), then we chodsg suchthat
Ng € N, for eachg < «, andg, € N, and (2)(b) holds.

Recall thatN,, is countable, so we can choose an increasing sequegcd € w) of natural numbers such that for
eachg € Ny, g(ax) < ax+1 for all but finitely manyk (to obtain such a sequence, take an increasing fundtiarf w
which dominates all members 6> N N,,, anddefinea, = *(0)). Sincel, is an ultrafilter, there exists € {0, 1}
suchthat

Ao = Jlaokse, 8kt 146) € U

kew

It remains to show that this definition guarantees (2)(c), thaQi¥, <n, Q**1. We will use Corollary 3.7 for that.
Assume thaD € N, is an open dese subst of Q%, andp = (n, h, F) € Q**1\ Q* (soa € F). Define, for each
m > n, hy : m— o by

h(k) k<n
maxgsk): B € F} n<k

Then(n, h, F) < (m, hy, F), and inparticular(n, h, F \ {«}) < (m, hy, F \ {«}). Note hat the mappingn — hp,
belongs toN, .

Define f : w — w by letting f(k) be the ninimal m such tlat there exists an elemeiin, h,F) € D
which extends (k, hx, F \ {a}). Then f € Ny, so thereexigs k suchthat m := f(ax4e-1) < agk+e. Let
Oo = (32k+e—1, Nag, 1. F \ {a}). By the definition of f, thereexigs g := (m,h, F) € D which extendsqo.
Letge = (M, h, F U {a}) € Q**1.

Thenqg; < g since hey share the same domain. Sirgge € D, it remains to show thatn, h, F) < qp.
(n,h, F\ {a}) < qo < qp; thus(n, h, F \ {«}) < g2, and hence it suffices to show that for eack [n, m) N A,,
0u(i) < h(i). But snce Ay N [@gkte—1, 2kre) = B, [N, M) N Ay C [N, agse—1), and ifi € [N, axe—1), then
h() = hay,, (i) =max{gs(i) : B € F} > gu(i), sincea € F, and we are done. O

hm(k) =

By Lemma 3.10Lemma 4.2will enable us to keepon(M) small. We nowirn to the problem of keepingsmall.
5. Keeping g small
First we state a sufficient condition fgibeing sndl.

Lemma5.1. Assume thatY; : ¢ < ¢} C [w]®, andk is a cadinal such that:

(1) For each neager seB C [w]”, [{¢ : Y; € B}| =c.
(2) Foreach Be [w]®, {¢ <c: B C* Y )| < «.

Theng < «.

Proof. By a result of Blassd], g < cf(c), so wecan assume that < cf(c). We now definer sets and the show hat
they are groupwise dense and that their intersection is empty.

Let (R¢ : ¢ < ¢) list all strictly increasing sequences of nalurambers, each sequence appearing cofinally often.
By induction ony < ¢ wechooses; < «, y; < candC; e [w]® as follows.

If there is somes < « swch that for eackt < ¢ with ¢s = ¢ we have[n’ nf+1) € Cg for all but finitely

i )
manyi, then we take as; the minimal sucte. By the assumption (1), we can choogeto be the minimaly < ¢

suchthaty # yg for all £ < ¢ and there are infinitely maniysuchthat[nf, nfﬂ) C Y,. In this case we set
C; = U{[nf, nfﬂ) li € w, [nf, nfﬂ) C,,}. Otherwse we set; = « andC; = w.

For eacht < «, define

Ge ={Be[w]”: (3 <o) e >&andB C* C;}).
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We show that eactye is groupwise dense. Clearly, it is closed under almost subsets. Let an increasing segoence
given. Then for each < &, there isby our construction somg(v) < ¢ suchthate,,y = v and[nj, ni;1) € Ci)
for infinitely manyi. As k < cf(c), ¢(¥) = supz(v) : v < &} < c. By the dhoice of (¢ : ¢ < c¢) there is some
B € (¢(x), ¢) suchthati? = f. Sogg > &, andU{[n{S, nﬂrl) : [n{g, niﬁH) C Yy} =Cp € Gs.

To see thaf \{G: : £ < «} = @, assume thaB is infinite and for eacl§, B € G:. Then for eactt < «, there is
Be < csuchthateg, = & andB C* Cg, C Yyp, - Sincex is regular, we can thin out and assume thdt ik &, then
EBe, F EPe,- Thus we have that far; < &2, Be, # Be,. andhencey,gs1 # Vbe,- Consequentii{yg, : § < «}| = k. But
{vp: 1 & <K} C{¢ <c: B C* Y}, contradicting the assumption (2) 0

As we already stated in the previous sections, we shall use a finite support itefBidds, : § < N2) of c.c.c.
forcing notions, and choose constant or increasing oradigssuch hatPs has theM?-chain condition for each.
We start with a ground model satisfying;§l and<>N2(Sf). Let(S:68 € Sf) be aQNZ(Sf)-sequence.

There are three possibilities fQ¥;. If cf(§) = Rg or if § is a successor, the@s is the Coha forcing.

If cf(6) = Ry andiFp, “nameS) is a sequence of ultrafiltets, and of functiongy,, o < 81", then we choosé\,,
a < R as inLemma 4.1but with additionad provisos ad force withQs = Q((Aq, 0y : @ < R¥1)). For the pemise of
this sentence we shortly sa$ guesses(U,, gy) : @ < R1). Otherwse, we sef); = {0}.

Definition 5.2. Fory < R, we consider the clags,, of y-approximations
(s, Q5. M?, Wi, Wo) : 8 < y)

with the following properties:

(@) (P5, Qs : 6 < y) is afinite support iteration of partial orders such that for edehy, |Ps| < R1.

(b) (M% : § < y) is a constat sequence of oracles such that for&llP;s satisfies theM®-chan condition and for
§+1<vy,lFp, “Q;s satisfies theM%+1)*-c.c.” (as inLemma 3.1(2)). The constant value of the oracle sequence
is some oraclé/l as inLemma 3.9 keepingcov(M) = 8.

(c) Wi, Wo C Ro\ Siz W; andW; are disjoint and if/ is a limit of cofinality®X, thenWy Ny, Wo Ny are both cofinal
iny.

(AdIfge WLUW) Ny then(@ﬁ is the Cohendrcing adding the rea{[g € “2.

(e)Ifs € Sf Ny and$ guesses{(ua(a) 0.(8)) : @ < Nq), then here is somestrictly increasing enumeration
(Ca(®) : o < Ry) of a cofinal part ofW, N §, and fa everya < R; there isé,, ) € {0, 1} suchthat

¢ _ ¢
Y 5 =10 (o)) € Us, andQs = QY %), 02(8) : @ < Rp).2
(f) Foralls <y, Ikp, “(VA e [w]”) {B e WiNSs: AC* Yg} is at most countable® Here, fors = y limit, P, is the

directlimitof (Pg : B < y),andfors =y = g+ 1,P, = Py Qp.
With the help of several lemmas we will prove the following.
Theorem5.3. If V = <>;;1 and<>xz(812), then br eachy < Ry, K, is not empty.

Let V fulfill the premises and léPy, be the direct limit of the first components of &a-approximation. IfG is
aPy,-genericfilter andYg[ze] = Y, for £ € Wy, then we have in the fal model a sequencgr; : ¢ < ¢) asin

Lemma 5.1with « = 8q.”
Corollary 5.4. v E cov(M) = g = Ry < cov(Dfin) = No.

We prove Theorem 5.3y induction ony and we shall work with end extensions. For sop® one has to work
to show item (e). We will do this in our first lemma. For afk but maybe the successor steps of points nosfrnone
has to work to show that item (f) can be preserved in the induction. This will be done in the last three lemmas.

2The;a (8), @ < N1, chosen here do not have to be comenghen regarding differeréts and we index them with$ because we need it. Strictly
speaking thet,, () is a functiont,, 5)(8). And also strictly speaking we should index pyas well, but we are suppressing this because we are
anyway only working with endx@ensions when increasing

3Hereit is Wjy. We use tke Cohens inW, to build the forcings of typ&s = Q(Y
theY,'s asinLemma 5.1

£eq (3)

)+ Ga(®) @ < Np) and the Cohen&’gl, ¢ € Wy, to huild
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Lemma5.5. Consider a successgr = 6 + 1, § € S2. Given anyk;-oracle (M3+1)*, the sguence(fy (8) : o < Ry)
can be chosen as i) so hat the forcings given in iterfe) have theM*+1)*-c.c.

Proof. This is a variation of.emma 4.1 We suppress some of this. We choose(z, : @ < R1) enumeratinghs N §
so that, dven the @acle(M®+t1)* = (N, : a« < R1), the Ghen reaf, is genericover N,. For ths it suffices that the
countable modeN, € VF«  which means that, just has to be sufficiently large. Let tag be chosen as in the proof
of Lemma 4.1 Then here are infinitely mank suchthat

rgf({ﬂ;o,}) N [agkye—1, Aokye) = 9,
and as in the proof dfemma 4.1this suffices. O

Choice5.6. We stat with M as describeg. Biemma 3.10all thePs, § < R, have theM-chain co_ndition as soon as
we can arrange that all tf@; have the(M)*-chan condition inVPs, The hen forcing has th&1-chain condition
foranyM. The@Q; in the step$ € 812 can be chosen by the previous lemma so that they havévh&c.c.

Lemmab.7. If § € Siz Qs is chosen as ilLemmab.5 andP; satisfieqf) of Definition5.2 thenPs.1 has the property
stated in iten{f).

Proof. Suppose thap IFp,,, “A € [w]”and|{ € W1 N§ : A C* Y;5}| = 81", and w.lo.g.p IFp,,, “A €

[w]”and{t e W1 N5 : AC* Yfg} is increasingly enumerated B§,, : @ < 81} = Wy (A)".

We take forn € w a maximal antichain{pn; : i € »} above p deciding the statements € A with truth value
tni. LetCni = {& <8 : pni(e) # 1}. Fore € Cnj N S with Q¢ # {0}, let pn,i(e) = (Mn,i(e), hni(e), Fn,i(e)).
Let Fr/1,i(8) = {¢4(e) : @ € Fni(e)}. We assume thatll these are objects not just names. Eoe Cp ;i \ Siz
let pni(e) = hni(e), myi(e) = |hni(e)| and set the other two components for simplicity to zero.18gt =
max{mpi(¢) : € € Cpj}. Set

C = (((Mni (), hn,i (&), Fni(e), Fri(e), (Qu(e) | Mnji e € Fni(e))) : & € Cnj) : N,il € ).

£
ForeachB € Ry, letpg > p, pg IFp,,, “AN[sp, 00) C YSZ‘* " and pg shall cecide the value of, € 2 andss € w.

Forp < RpwesetCs = {e < §: pp(e) # 1}. If e € Cg N SZ, thenpg(e) = (Mg(e), hp(e), Fa(e)). If e € Cp \ SZ,
thenpg(e) = hg(e), g(e) = |hg(e)| andFg(e) = ¥. Forall B, ¢ € Cg, let Fé(s) = {Cu(e) 1 € Fg(e)} S Wa.
Set

Re(m) = ((Mg(e), hg(e), Fg(e), F4(e), (Qu(e) I M:a € Fg(e))) 1 & € Cp).

These are finite arrays of finite sets.

Now we thinout: First weassume that for somee w forall 8 < R1, |Cg| = Kk, sg < k. We gply the delta system
lemmatoCg, B € X1, andgetarooC. We sssume thad € C, as this § thedifficult case. We apply the delta lemma for
eache € C to theFg(e), B € Ry, andget a rootF (¢), and toF/; (g), B € 81, andget a rootF’(¢). We further assume
that for eachg in the delta system and for all € C, all Fg(e) \ F(¢) are above mak J,..c(F(¢)) U (C\ {5}))
and the same for the primed ones. We thin out further and assume that théne(areh(e), F(¢)) such that for
all B < Ry, foralle € C, mg(e) = m(e), hg(e) = h(e) € ™w, and fa thee € Cg \ C, the inceasingly
enumerated'’s in Cg = {siﬁ i < k} are isomorphic to the lexicographically firgt : i < k), i.e,, m,g(eiﬁ) = m(sgj),
hﬂ(SiB) = h(sj) € ¢y, and weuse a delta system argument on Epe{siﬁ) giving a rootF (¢j) and again impose on
the partsFg (eiﬂ) \ F(¢j) that they have to lie aboue); _y F(¢i) and are all of the same size. The analogous thinning
out is done for the primed parts, that have to lie above(fnkx, (F’(¢i)) U (C \ {8})), be for alli of the sane size
|F/§(eiﬁ)| independently of (but depending oin), and allof the(F/; (eiﬂ) i < k) shall have the same or >-relaions
with the members o€ (si). Moreover, if ¢ is a Gohen coordinate i€g, thenpg(e) does not depend of.

We letmpax be the maximum of then(e) and of the lengths of all the finitely many Cohen coordinates fos il
the delta system. Let denote theinitial segment relation for finite sequences. We thin out further and assume that all
the Rg(Mmax) have the same quantifier fréey, , <)-type over RarC) U RanRanC)). Speaking about components
of five tuples(m, h, F, F’, §) separately is allowed as well as evaluatingnd the members of all involved finite sets.
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There are only countably many quantifier types in thisguage that can be fulfilled by a (finite) sequeRgéMmax)
in our delta system.
Let Gs be a subset dP; that is generic oveY suchthatW* = {y e Wi(A)Né : p, I § € Gs} is uncountable.
Fory € W*, letinV[Gs],

B,={Ncw:3p €Ps1,p > p,.p' |5 €Gs, andp’ Ikp,,, n € AL

B, c*Y, Ea[G] and the atter is fully evaluated b, becausé&, € Wi C § + 1 fora < R, ands & W.

We shalf shw that for 8, y € W*, Bg N [k, 00) = B, N[k, 00) = B € V[G]. ThenB is a wunterexample to
(Pe, Qp, M, Wi, Wo) & <6, B < §) € Ks.

Let||p,,, denote thecompatibility relation inPs1. If n € Bg, thenpg||p,,, pn,i for the one suchthatp,; € G,
and for this we havet,j = true. The saméiolds forn ¢ Bg with false Soour claim thatBg N[k, co) = B, N[k, 0o)
for all 8, y € W* now follows from

Claim 5.8. Forall 8, y in W*:

Psllps,, Pn.i iff Pyllps, Pnii-

Proof. The point is the coordinat& sincethe restrictions té are inG;, andhence compatible. Assumg, i (§) =
(mn,i, hni, Fnii), pg(8) = (mg, hg, Fg), p,(8) = (m,, h,, F,). We donot writethe § at these points, but will not
suppress it completely. We assume tipgts) is compatible withpn i (8).

First casemg > myi. Thenpg||pni meanshg > h, i and for alle € Fg U Fyj for all m e [mp i, mg) N Yf“gg‘)”,
(hg(M) > gu(8)(M)).

We have to showhat the samholds forp, . First, by our thinning outmg = m,,, hg = h,, andhenceh, > hyjj,
andFgNFnj =F, NFnji.

1(a) We have to show: For all € Fn,i forallm € [mni, m,) N, 5‘(”5(? (h, (M) > gy (8)(M)).

And sincehg = h,,, foralla € Fq; forallm e [mpi, m,) N Yf“(”g‘;), (h, (M) > gy (8)(M)).

1(b) We also have to show: For alle F, forallm € [my;, m,)NY, %‘Wh (M) > go(8)(M)). Fora € F, N Fg
the latter requirement is clearly fulfilled, &g = h,,. For the part~, \ F((S) we need to look closer: Suppose some

condition inp,, forced something abomf‘(’gi) Thenp, (¢« (8)) # 1 andhences, (§) € C,, NWa. But then because of

the indiscernibility ovem, = mg < Mmax (Which is a component at), £, (8) € Cs and hence it is in the ro@. So

ps forced by our thinning out the same fact abM (i)ﬂmmax Herce, foralle € F, forallm e [mpj, my)ﬂY;{‘(’(;‘;),
(h, (M) > g (8)(M)). So, t&king 1(a) and 1(b) togethep,},||pnI
Second casemlg < mpi. Thenhg < hnj, and pgl|pn; means that for ale € Fg U Fyj for all m e

[mg, Mni) N Y{ “(”8(‘;), (hn,i (M) > g (8)(M)). This leter statement dahold also forF, instead ofFg andm,, instead

of mg, becausen, = mg and(Fg, (9o (8) | Mn,i : o € Fg)) and(F,, (9.(8) [ mnj : @ € F,)) are part ofRg (Mmax)

andR, (mmax) and hence indiscernible ovky ; for argumentsn ij?a()'s), as for thesen'’s, that ae forced to be in
a Cohen partg, (8) € C and hence by our thinning out we haviax > m. Also h,, < hp i, andhencep, || pn,i.
So the claim is proved and with it ald@mma 5.7 O

Lemma5.9. (1) If cf(y) = &1 andQ and MY are as in the previous lemma and(ig, Q,g, ME Wi, Wo) @ B <
y) € K,, then

(Pp. Qp. MP Wi Wo) 1 B < y)" (Py. Q. M) € K.
(2) If cf(y) = Ro and if (Ps, Qp, MP, Wi, W) : B < y) € K, then
(]P’,s,(@,s, MP Wi, W) : B < y) (P, C, M”) € K, 11.

(3) If cf(y) = No and if (B, Qp, MP Wi, Wo) : B < y) | B € Kgforeachp < y, then(Pg, Qp, MP, Wy, Wy) :
B<y)ek,. ) -
@) If cf(y) = Nl ory = 8, and if (Pg, Qg, ME, Wi, Wo) : B < y) | B € Kg for eachp < y, then

(Pg. Qg MA Wi, Wa) : B < y) € K.



70 H. Mildenberger et al. / Annals of Pure and Applied Logic 140 (2006) 60—-71

Proof. (1) This was proved ihemma 5.7

(2) If Ais an almost subset of uncountably marys, then there is somgg < y such that there are uncountably
many such; belowyp. A is possbly a hname using the last, new forcing. But this is just Cohen forcing. So there is
some finite part of a Cohen condition forcing thais in uncountably many’;'s. But then also the forcing, already
contains a name for some infiniB2C « almost contained in the intersection of uncountably mériy with ¢ < yo.
So P, does not fulfill property (f) and hence the induction hypothesis is not fulfilled.

(3) First we use the pigeonhole principle for thigs as inthe prevous item. Then we use the following

Lemma5.10. Assume

(a) (P : n € w) is a<-increasing sequence of c.c.c. forcing notions with urton
(b) Y is a set ofPg-names of infinite subsets ©f
(c) forn € w wehavel- p "k = cf(x) > {Y € YV : B €* Y}|", whenever Bis aPn-name of an infinite subset of

Then conditior(c) holds forP too.

Proof. SinceP is a c.c.c. foraig notion, also ifv? we havex is a reyular cardinal.
If the desired onclusion fails, then we can find B-name B of an infinite subset otv and a sequence
((Pa» Yo, My) @ & < k) suchthat
() My € w,
(B) Yo € Y without repetitions,
() P €P, po Irp B\ Mo S Yo

Sincecf(c) > Ro, for somen(x), m(x) € w the setS =" {« < « : py € Pn(x), My = M(x)} has cardinalityx. We
identify it with «.
Now for every large enough € Swe have

Po lFp & = [{B € S: pg € Gp,, -

Why? Else for an end segmentwf< « there isg, > po such that for all but< x manyp € S, du IF pg & Gp,,,-
That means that for an end segmentok «, w.l.o.g., for alle € «, Perp, := { € S: gg L g} contains an end
segment ofS. Then we take the diagonal intersectiDrof all these end segments 8f Sincex is regular,D contains
aclub ing. Butthen{qg : 8 € D} is an antichain ifPn,, of sizex. Contradiction.

Let Gn(x) be a subset dPn(,) generic oveV, and letS, := {8 € S: pg € Gney}. We hooseGn) suchthat
IS:| =«. WeletB’ =N{Yg \ m(x) : B € S;}. TheninV[Gp ], B is an infinite subset ab included ink members
of ), contradicting the assumption. $@mma 5.10s proved. O

(4) If Ps adds someA, then his already comes earlier, say W+, ¢ < §, becauseA C w and because of the
c.c.c. IfA €* Y, is forced, thert < ¢. This contradicts the induction hypothesis . This mmpletes the proof of
Lemma5.9 O

The lemmas together give that there isNanrapproximation, and the proof dheorem 5.3s completed. O
With some extra care our gof can be modified to yield the following (cf7 4]).

Theorem 5.11. Itis consistent (relative to ZFC) that all of the following assertions hold:

(1) Each unbounded set 6f» contains an unbounded subset of s¥ze
(2) Each nonmeager subset%b contains a nonmeager subset of skze
(3) g = Ru.

(4) cov(Dfin) = cov(M) = ¢ = Rp.

Proof. This time we work with a version of, with increasing oracles, which means that ¥Mé-chan condition
implies M?-chan condition fore > § and thatPs I “P(s .y has theM®*+1-c.c”, though the initial segment need not

yet fulfill it, and the name for this new oracle may not yet have an evaluation in an initial sefment< §. The

new parts of the oracles take care of the unbounded andoimmeager families that appear later in the iteration and
that are frozen by the next step if their intersection with is guessed by the diamond sequence and happens to be
unbounded or nonmeager at the current stagehe conservation of the unboundedness and nonmeagerness of the
intersection is written into all the oracles frahonwards. O
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