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well-understood. We prove a number of new results concerning such productively Lindelöf
spaces with some extra property, mainly assuming the Continuum Hypothesis.
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1. Applications of elementary submodels

A quick introduction to the method of elementary submodels in our context is given in Appendix A.

Definition 1.1. A topological space is productively Lindelöf if its product with every Lindelöf space is Lindelöf. A space is
powerfully Lindelöf if its ω-th power is Lindelöf.

Problem 1.2. (Michael [27,28]) Are productively Lindelöf spaces powerfully Lindelöf?

Lemma 1.3. (Alster [2]) The Continuum Hypothesis implies productively Lindelöf T3 spaces of weight � ℵ1 are powerfully Lindelöf.

Since Lindelöf first countable T2 spaces have cardinality (and hence weight) at most continuum, we see that, assuming
the Continuum Hypothesis, productively Lindelöf first countable T3 spaces are powerfully Lindelöf [9]. This can be extended,
as follows.
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Theorem 1.4. The Continuum Hypothesis implies that productively Lindelöf sequential T3 spaces are powerfully Lindelöf.

Proof. Let X be productively Lindelöf sequential T3, and U be an open cover of Xω . Without loss of generality, U is
composed of basic open subsets of Xω . Let M be a countably closed elementary submodel of Hθ of size 2ℵ0 = ℵ1, for θ

regular and sufficiently large, such that M contains X, U , and anything else needed. For any space Y ∈ M , let Y M be the
topology on Y ∩ M generated by the sets U ∩ M where U ∈ M is open in Y .

Since M is countably closed, X ∩ M is a closed subset of X and thus also productively Lindelöf. Since every open set
in XM is open in X ∩ M with the relative topology, XM is a continuous image of X ∩ M , and therefore XM is productively
Lindelöf.2 The weight of XM is � |M| � ℵ1, so by Alster’s Lemma 1.3, (XM)ω is Lindelöf.

Since M is countably closed, Xω ∩ M = (X ∩ M)ω , that is, (Xω)M = (XM)ω as sets. Also, for Bi ∈ M open in X , the set∏
i<ω Bi ⊆ Xω , when intersected with M , is just

∏
i<ω(Bi ∩ M), so we see that as spaces, (Xω)M = (XM)ω .

Thus, (Xω)M is Lindelöf. As U ∈ M , we have by elementarity that {U ∩ M: U ∈ U ∩ M} is an open cover of (Xω)M . Thus,
there are {Un: n < ω} ⊆ U ∩ M such that {Un ∩ M: n < ω} covers (Xω)M . Since M is countably closed, {Un: n < ω} ∈ M .
M |� {Un: n < ω} covers Xω , so indeed {Un: n < ω} covers Xω . �

It would be nice to eliminate the hypothesis that X be sequential. This was only used to get that the sequentially closed
set X ∩ M is indeed closed. There are large compact (hence productively Lindelöf) sequential T3 spaces, so “sequential” is
indeed an improvement over “first countable”. We do not know whether the Continuum Hypothesis is necessary for these
results.

It is not known whether the weight restriction in Alster’s Lemma 1.3 can be removed, nor whether the Continuum Hy-
pothesis is necessary. There is no reason to believe the weight of a productively Lindelöf space cannot exceed its cardinality,
so the following result is not obvious.

Corollary 1.5. The Continuum Hypothesis implies productively Lindelöf T3 spaces of cardinality ℵ1 are powerfully Lindelöf.

Proof. As in the proof of Theorem 1.4, we take a countably closed elementary submodel M of Hθ with |M| = ℵ1, such that
M contains everything needed, and, in addition, X ⊆ M . It follows that the weight of XM is � ℵ1. Since X ∩ M = X , XM is a
continuous image of X and hence is productively Lindelöf and so powerfully Lindelöf, and hence, as before, X is powerfully
Lindelöf. �
2. Selective covering properties

Definition 2.1. A point-cofinite cover of a space is an infinite open cover such that each point is in all but finitely many
members of the cover.

Definition 2.2. A topological space X is:

(1) Alster if each cover of X by Gδ sets such that each compact set is included in one of them has a countable subcover.3

(2) Hurewicz if for each sequence {Un}n<ω of open covers without finite subcovers, there are finite Fn ⊆ Un such that
{⋃ Fn: n < ω} is a point-cofinite cover.

(3) Menger if for each sequence {Un}n<ω of open covers without finite subcovers, there are finite Fn ⊆ Un such that
{⋃ Fn: n < ω} is a cover.

Let P be a property of topological spaces. A space X is powerfully P if Xω has the property P . X is finitely powerfully P
if all its finite powers of X have the property P .

By the definition, Hurewicz spaces are Menger. Alster spaces are productively and powerfully Lindelöf [2]. A slightly
extended version of an argument from [9] yields the following generalization of results from [9,31].

Theorem 2.3. Alster spaces are Hurewicz.

Proof. Let {Un}n<ω be a sequence of open covers of X without finite subcovers. We may assume that each Un is closed
under finite unions. Let

U =
{ ⋂

n<ω

Un: ∀n, Un ∈ Un

}
.

2 A general form of this argument appears in Junqueira and Tall [24], see Proposition A.3 in Appendix A.
3 Alster’s terminology [2] is slightly different, but equivalent.



F.D. Tall, B. Tsaban / Topology and its Applications 158 (2011) 1239–1248 1241
Since X is Alster, there is a countable subcover {Vm: m < ω} of U . For each m, write Vm = ⋂
n<ω Umn , where Umn ∈ Un for

all n. Then for each x ∈ X , x ∈ ⋃
m�n Umn for all but finitely many n. �

Thus, each property in Definition 2.2 implies the next one. These implications are strict: For sets of reals (indeed, for
arbitrary spaces where every compact set is Gδ ), Alster is clearly equivalent to σ -compact, and Hurewicz fits strictly between
σ -compact and Menger.4

Corollary 2.4. Alster spaces are finitely powerfully Hurewicz.

Proof. Finite products of Alster spaces are Alster [2,10]. The proof in [10] does not use separation axioms. Apply Theo-
rem 2.3. �

A set of reals is totally imperfect if it includes no uncountable perfect (equivalently, compact) set.

Theorem 2.5. There is a finitely powerfully Hurewicz set of reals which is not productively Lindelöf (and hence not Alster).

Proof. Michael [26] proved that a totally imperfect set of reals is not productively Lindelöf. Bartoszyński and the second
named author [11] proved that there is a totally imperfect, finitely powerfully Hurewicz set of reals. �
Lemma 2.6. (Alster [2]) The Continuum Hypothesis implies productively Lindelöf T3 spaces of weight � ℵ1 are Alster.

Alster asked whether every productively Lindelöf space is Alster [2]. Alster’s problem is still open. The following problem
may be easier.

Problem 2.7. Does the Continuum Hypothesis imply productively Lindelöf sequential T3 spaces are Alster?

Theorem 2.8. The Continuum Hypothesis implies productively Lindelöf sequential T3 spaces are finitely powerfully Hurewicz.

Proof. It suffices to show that if (Xk)M is Hurewicz, then Xk is Hurewicz. We assume without loss of generality that the
sequence {Un}n<ω of open covers is in M . Then for each n, there is a finite Fn ⊆ Un such that

⋃{U ∩ M: U ∈ Fn} is a
point-cofinite cover of (Xk)M . Note that each Un ∈ M . Since Un is countable, it is included in M , and hence each Fn ∈ M . As
M is countably closed, {Fn}n<ω ∈ M . Thus,

M �
{⋃

Fn: n < ω
}

is a point-cofinite cover of Xk,

and therefore the same holds in “the real world”, so indeed Xk is Hurewicz. �
D-spaces were defined in [13]. See also [14,18].

Definition 2.9. A space X is D if for every neighborhood assignment {V x}x∈X (i.e., each V x is an open set containing x), there
is a closed discrete Y ⊆ X such that {V x}x∈Y covers X .

Aurichi [8] proved that Menger spaces are D. Thus, assuming the Continuum Hypothesis, productively Lindelöf sequential
T3 spaces are finitely productively D. L. Zdomskyy pointed out to us that this last assertion can be generalized substantially.
A Michael space is a Lindelöf space M such that M × P (the space of irrationals) is not Lindelöf. Michael spaces can be
constructed from a variety of axioms (in particular, from The Continuum Hypothesis), and it is a major open problem
whether they can be constructed outright in ZFC. If there is a Michael space M , then productively Lindelöf spaces are
Menger (and thus D) [30]. Indeed, Zdomskyy proves in [34] that if X is not Menger, then P is a compact-valued upper-
semicontinuous image of X . Thus, if X is not Menger, then the non-Lindelöf space M × P is a compact-valued upper-
semicontinuous image of M × X . Consequently, M × X is not Lindelöf.

3. Indestructibly productively Lindelöf spaces

Definition 3.1. A space is indestructibly productively Lindelöf if it is productively Lindelöf in every countably closed forcing
extension.

4 For an accessible exposition of this result, see [32].
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Aurichi and the first named author proved that a metrizable space is indestructibly productively Lindelöf if and only if
it is σ -compact [9]. It is easily seen that if a space Y is Hurewicz in a countably closed extension, then it is Hurewicz.
The following theorem answers a question of Aurichi and the first named author [9].

Theorem 3.2. Indestructibly productively Lindelöf T3 spaces are powerfully Lindelöf and finitely powerfully Hurewicz (in particular,
finitely powerfully D).

Proof. Powerfully Lindelöf: Collapse max(2ℵ0 , w(X)) to ℵ1 via countably closed forcing. In the extension, the indestructibly
productively Lindelöf X remains productively Lindelöf and hence, by the Continuum Hypothesis, X becomes Alster. Then by
Lemma 1.3, X becomes powerfully Lindelöf. But as a set, Xω in the extension is the same as Xω in the ground model. Since
the space Xω is Lindelöf in a countably closed extension, it is Lindelöf in the ground model, as claimed.

Finitely powerfully Hurewicz: In the extension obtained by collapsing as above, X is Alster, so every finite power of X is
Hurewicz. But then every finite power of X is Hurewicz in the ground model. �
Problem 3.3. Are indestructibly productively Lindelöf spaces Alster?

Corollary 3.4. Indestructibly productively Lindelöf p-spaces are σ -compact.

Proof. Let X be indestructibly productively Lindelöf and a p-space in the sense of Arhangel’skiı̆ [4]. Then, as a paracompact
p-space, X maps perfectly onto a metrizable Y . Let Z be Lindelöf in a countably closed extension. Then X × Z is Lindelöf.
But then, by continuity, so is Y × Z . So Y is indestructibly productively Lindelöf. But for metrizable spaces, indestructible
productive Lindelöfness is equivalent to σ -compactness [9], which latter property is a perfect invariant. �

Arhangel’skiı̆ [6] proved that if Xω is Lindelöf, then either X is compact or Xω includes a closed copy of P. Since the
latter option is impossible for Menger spaces, he concluded that X is powerfully Menger if and only if X is compact.5

Corollary 3.5. If there is a Michael space, then for every space X, Xω is productively Lindelöf if and only if X is compact. �
Theorem 3.6. If Xω is indestructibly productively Lindelöf, then X is compact.

Proof. Again, collapse max(2ℵ0 , w(X)) to ℵ1. In the extension, Xω is productively Lindelöf and there is a Michael space,
since the Continuum Hypothesis holds, which implies that there is a Michael space [26]. Therefore X is compact in the
extension, and so is compact. �
4. Mengerizing Michael’s problems

As Menger implies Lindelöf, the classic problems about productively Lindelöf spaces make sense when Lindelöf is replaced
by Menger.

Example 4.1. ω (the countable discrete space) is productively Menger, but not powerfully Menger.

The product of a Menger space with P cannot be Menger since P is not Menger, but the question whether the product
of a Menger space with P must be Lindelöf is less trivial. We will show that the answer is negative, in a very strong sense.

Definition 4.2. An open cover U of a space X is an ω-cover if X /∈ U , but for each finite subset F of X there is U ∈ U
containing F . X is a γ -space if each ω-cover of X includes a point-cofinite cover.

γ -spaces were introduced by Gerlits and Nagy [17], who proved that, for Tychonoff spaces, X is a γ -space if and only
if the space C p(X) (the continuous the real-valued functions on X with the topology of pointwise convergence) is Fréchet–
Urysohn. This is a very strong property. It is, for example, consistent that all metrizable γ -spaces are countable [17]. If X
is a γ -space then X is Hurewicz. Being a γ -space is preserved by finite powers [17]. In particular, γ -spaces are finitely
powerfully Hurewicz.

For f , g ∈ ωω , f �∗ g means that f (n) � g(n) for all but finitely many n. A subset of ωω is unbounded if it is unbounded
with respect to �∗ . The minimal cardinality of an unbounded subset of ωω is denoted b. ℵ1 � b � 2ℵ0 . In particular, the
Continuum Hypothesis implies b = ℵ1. Additional information on b and similar combinatorial cardinal characteristics of the
continuum can be found in [12].

5 Arhangel’skiı̆ denotes by “Hurewicz” the property we call “Menger”. We use the currently accepted terminology.
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We identify elements x ∈ [ω]ω with increasing elements of ωω by letting x(n) be the n-th element of x. We will need
the following well-known fact. For the reader’s convenience, we reproduce here the proof given in [33].

Lemma 4.3 (Folklore). If B ⊆ [ω]ω is unbounded, then for each increasing f ∈ ωω , there is x ∈ B such that x ∩ ( f (n), f (n + 1)) = ∅
for infinitely many n.

Proof. Assume that f is a counterexample. Let g dominate all functions fm(n) = f (n + m), m < ω. Then for each x ∈ B ,
x �∗ g . Indeed, let m be such that for all n � m, x ∩ ( f (n), f (n + 1)) 
= ∅. Then for each n, the n-th element of x is smaller
than fm+1(n). �

Orenshtein and the second named author [33] proved that an assumption weaker than b = ℵ1 implies that there is an
uncountable γ -space X ⊆ R. The proof of the forthcoming Theorem 4.6 is a modification of their proof, slightly simplified
in light of the stronger assumption.

Definition 4.4. Identify P (ω) with the Cantor space 2ω , using characteristic functions. This defines the Cantor topology
on P (ω). Consider the finer, Michael topology on P (ω) obtained by declaring all elements of [ω]ω isolated. Henceforth,
unless otherwise indicated, P (ω) is always considered with the Michael topology.

The basic open sets in the Cantor topology of P (ω) are thus those of the form

[s,n] = {
x ∈ P (ω): x ∩ {0, . . . ,n − 1} = s

}
,

where n ∈ ω and s ⊆ {0, . . . ,n − 1}. We will use the following modification of Lemma 1.2 of Galvin and Miller [16].

Lemma 4.5. Consider P (ω) with the Michael topology. Assume that [ω]<ω ⊆ Y ⊆ P (ω), Y is countable, and U is a family of open
subsets of P (ω) such that each finite subset of Y is included in some member of U . There are m0 < m1 < · · · and (not necessarily
distinct) U0, U1, . . . ∈ U such that:

(1) For each y ∈ Y , y ∈ Un for all but finitely many n.
(2) For each x ⊆ ω, x ∈ Un whenever x ∩ (mn,mn+1) = ∅.

Proof. Enumerate Y = {yn: n < ω}.
Let m0 = 0. For each n � 0: Take Un ∈ U , such that P ({0, . . . ,mn}) ∪ {y0, . . . , yn} ⊆ Un . Let s ⊆ {0, . . . ,mn}. As s ∈ [ω]<ω

and Un is a neighborhood of s, Un includes a neighborhood of s in the Cantor set topology, and thus there is ks such that
for each x ∈ P (ω) with x ∩ {0, . . . ,ks − 1} = s, x ∈ Un . Let mn+1 = max{ks: s ⊆ {0, . . . ,mn}}. �

Since P (ω) is equipped with a topology finer than that of Cantor’s space, which is metrizable, the following result cannot
be proved outright in ZFC.

Theorem 4.6. Consider P (ω) with the Michael topology. If b = ℵ1 , then there is a γ -space X ⊆ P (ω) which is also a Michael space
(i.e., such that X × P is not Lindelöf ).

Proof. For x, y ∈ [ω]ω , x ⊆∗ y means that x \ y is finite. As b = ℵ1, there is an unbounded (with respect to �∗) set
{xα: α < ℵ1} ⊆ [ω]ω such that for all α < β < ℵ1, xβ ⊆∗ xα .

Let

X = {xα: α < ℵ1} ∪ [ω]<ω ⊆ P (ω),

with the subspace topology (so that the elements xα are isolated), and consider X × [ω]ω , where the space [ω]ω on
the right is endowed with the ordinary Cantor space topology, so that it is homeomorphic to P. The uncountable set
{(xα, xα): α < ℵ1} is closed and discrete in X × [ω]ω . Thus, this space is not Lindelöf. Once we prove that X is a γ -space,
we will have in particular that X is Lindelöf, so that X is a Michael space. That X is a Michael space is essentially proved
in [12]; that X is a γ -space is new.

Let U be an ω-cover of X . For each α < ℵ1, let Xα = {xβ : β < α} ∪ [ω]<ω .
Let α0 = 0. By Lemma 4.5, there are m0

0 < m0
1 < · · · and elements U 0

0, U 0
1, . . . ∈ U such that each member of Xα0 is in U 0

n

for all but finitely many n, and for each x ∈ P (ω), x ∈ U 0
n whenever x ∩ (m0

n,m0
n+1) = ∅. Let D0 = ω.

As α0 < ℵ1, {xα: α0 < α < ℵ1} is unbounded. By Lemma 4.3, there is α1 > α0 such that D1 = {n: xα1 ∩ (m0
n,m0

n+1) = ∅}
is infinite. By Lemma 4.5, there are m1

0 < m1
1 < · · · and members U 1

0, U 1
1, . . . ∈ U such that each member of Xα1 is in U 1

n for
all but finitely many n, and for each x ∈ P (ω), x ∈ U 1

n whenever x ∩ (m1
n,m1 ) = ∅.
n+1
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Continue in the same manner to define, for each k > 0, elements with the following properties:

(1) αk > αk−1;
(2) Dk = {n: xαk ∩ (mk−1

n ,mk−1
n+1) = ∅} is infinite;

(3) mk
0 < mk

1 < · · ·;
(4) U k

0, U k
1, . . . ∈ U ;

(5) each member of Xαk is in U k
n for all but finitely many n; and

(6) for each x ∈ P (ω), x ∈ U k
n whenever x ∩ (mk

n,mk
n+1) = ∅.

Let α = supk αk . Then α < ℵ1, Xα is countable, and Xαk ⊆ Xαk+1 for all k. Thus, there are for each k a finite Fk ⊆ Xαk such
that Fk ⊆ Fk+1 for all k, and Xα = ⋃

k Fk . For each k, let Ik = {n ∈ Dk: Fk ⊆ U k
n}. Ik is an infinite (indeed, cofinite) subset

of Dk , and for each x ∈ Xα , if N is the first with x ∈ F N , then x belongs to
⋂

n∈Ik
U k

n for all k � N .

Take n0 ∈ I1. For k > 0, take nk ∈ Ik+1 such that mk
nk

> mk−1
nk−1+1, xα ∩ (mk

nk
,mk

nk+1) ⊆ xαk+1 ∩ (mk
nk

,mk
nk+1), and U k

nk
/∈

{U 1
n1

, . . . , U k−1
nk−1

}. We claim that each member of X is in U k
nk

for all but finitely many k.6 By the last assertion in the
previous paragraph, this is true for each member of Xα . As for each β � α we have that xβ ⊆∗ xα , it suffices to show that
for each x ⊆∗ xα , x ∈ U k

nk
for all but finitely many k. For each large enough k, mk

nk
is large enough, so that

x ∩ (
mk

nk
,mk

nk+1

) ⊆ xα ∩ (
mk

nk
,mk

nk+1

) ⊆ xαk+1 ∩ (
mk

nk
,mk

nk+1

) = ∅,

since nk ∈ Dk+1. Thus, x ∈ U k
nk

. �
5. Analytic spaces

The first named author proved in [31] that every analytic, metrizable, productively Lindelöf space is σ -compact if and
only if there is a Michael space. The hypothesis of metrizability can be removed. According to Arhangel’skiı̆ [6], a space is
analytic if it is a continuous image of the space P of irrationals.

Theorem 5.1. Every analytic productively Lindelöf space is σ -compact if and only if there is a Michael space.

Proof. By their definition, analytic spaces are Lindelöf. Relying on results of Jayne and Rogers [22], Arhangel’skiı̆ [6] proved
that analytic spaces are perfect pre-images of metrizable spaces. Since both productive Lindelöfness and σ -compactness are
perfect invariants, we are done. �

Perfect pre-images of analytic spaces are called properly analytic in [22]. It follows immediately that every properly
analytic, productively Lindelöf space is σ -compact if and only if there is a Michael space.

According to Hansell [19], a space is K -analytic if it is the continuous image of a Lindelöf Čech-complete space.

Problem 5.2. Is it consistent that every productively Lindelöf K -analytic space is σ -compact?

The first named author also proved in [31] that the Axiom of Projective Determinacy implies that every projective,
metrizable, productively Lindelöf space is σ -compact if and only if there is a Michael space.

We can certainly extend this to perfect pre-images of projective metrizable spaces, but what is the analog of
Arhangel’skiı̆’s definition? One possibility is to define “projective” as a continuous image of a projective subset of P (or R).
We do not know whether this definition allows us to apply Projective Determinacy as desired. However, we do have the
following.

Theorem 5.3. The Continuum Hypothesis implies every productively Lindelöf, continuous image of a separable metrizable space is
σ -compact.

Proof. Let X be such an image. X is T3. X has a countable network and so X is separable and every closed subset is Gδ .
The weight of X is � 2ℵ0 , so by Alster’s Lemma 2.6, X is Alster. But Alster spaces in which compact sets are Gδ are
σ -compact [2]. �

6 Technically, point-cofinite covers are required to be infinite. To see that this follows, note that if {U k
nk

: k < ω} is finite, then there is U such that

U = U k
nk

for infinitely many k. As X is not in U , there is x which is not in U , and consequently not in infinitely many members of the sequence {U k
nk

}k<ω ,
contradicting the assertion we are about to prove.
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The Baire Hierarchy is formed by closing the collection of closed sets under countable unions and intersections. In contrast
to the Borel Hierarchy, the Hurewicz Dichotomy fails at a low level. A Kσδ space is a space which is the intersection of
countably many σ -compact subspaces of some larger space.

Example 5.4. There is a Kσδ space which is neither σ -compact nor includes a closed copy of P.

Proof. In [7] Arhangel’skiı̆ constructs a Kσδ space, due to Okunev, which is not σ -compact but has only one non-isolated
point, so does not include a closed copy of P. The space is obtained by taking the Alexandrov duplicate of P, and then
collapsing the non-discrete copy of P to a point. �
5.1. κ-Analytic spaces

Descriptive set-theorist Ben Miller told us that the “right” definition of projective in a non-separable metrizable context
is the following one.

Definition 5.5. A T2 space X is κ-analytic, where κ is an uncountable cardinal, if X is a continuous image of the product of
ℵ0 copies of the discrete space of size κ .

Every space X is |X |-analytic.
Recall that, according to the Hurewicz Dichotomy, every analytic non-σ -compact subspace of the Baire space contains a

closed copy of the Baire space, and thus, if there is a Michael space, an analytic metrizable space is productively Lindelöf if
and only if it is σ -compact. This and Example 5.4 motivate the following question.

Question 5.6. Let κ < 2ℵ0 . Is it consistent that

(1) Every non-σ -compact κ-analytic metrizable space includes a closed copy of P?
(2) Every productively Lindelöf κ-analytic metrizable space is σ -compact?

It was L. Zdomskyy who pointed out to us that, if we drop the metrizability assumption, then the one-point Lindelöfica-
tion of the discrete space of size ℵ1 gives a T3 counter-example to both items of Question 5.6, and that κ < 2ℵ0 is necessary
for the problem to have a possibly genuine descriptive set theoretic flavor.

The hypotheses in the following theorem, which answers (2) of Question 5.6, follow from Martin’s Axiom plus the
negation of the Continuum Hypothesis, see [3].

Theorem 5.7 (Zdomskyy). Assume that there is no cover of the Cantor space by ℵ1 meager sets, and there is a Michael space. Then
every productively Lindelöf ℵ1-analytic subset of the Cantor space is σ -compact.

Proof. The proof is analogous to that of Theorem 3.3 in [30]. The key is to observe that the proof of Repicky’s Theorem in
[29], that Σ1

2 subspaces of P that are not the union of ℵ1 compact subspaces include a closed copy of P, also works for
ℵ1-analytic subspaces. �
Problem 5.8 (Zdomskyy). Is it consistent that every non-σ -compact space which is κ-analytic for some uncountable cardinal
κ < 2ℵ0 includes a closed copy of P?

6. Spaces of countable type

In 1957, M. Henriksen and J.R. Isbell [20] introduced the class of (Tychonoff) spaces that are Lindelöf at infinity, i.e., the
complement β X \ X of the space X in its Stone–Čech compactification is Lindelöf. They proved that a Tychonoff space X is
Lindelöf at infinity if and only if each compact subset of X is included in a compact K ⊆ X such that χ(X, K ) � ℵ0, i.e., there
is a countable base for the neighborhoods of K in X . Arhangel’skiı̆ [5] called spaces satisfying the latter equivalent condition
of countable type. Locally compact spaces, metrizable spaces, Čech-complete spaces, and their common generalization, p-
spaces, are all of countable type.

We present a simple proof for the following generalization of a result of Alster from [2].

Theorem 6.1. (Alas, et al. [1]) The Continuum Hypothesis implies every productively Lindelöf T3 space of countable type and weight
� ℵ1 is σ -compact.

Proof. We generalize Michael’s original proof that the Continuum Hypothesis implies productively Lindelöf metrizable
spaces are σ -compact.
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Embed X in [0,1]ℵ1 . Its closure in [0,1]ℵ1 is a compactification γ X of X . The identity map on X extends to a contin-
uous surjection f : β X → γ X , and since it fixes X , f maps β X \ X onto γ X \ X [15, 3.5.7]. As β X \ X is Lindelöf, so is
γ X \ X .

Assume that X is not σ -compact. Then γ X \ X is not Gδ in γ X . By the Continuum Hypothesis, we can take a collection
{Uα: α < ℵ1} of open sets including γ X \ X , such that every open set including γ X \ X includes some Uα . By taking
countable intersections and thinning out, we can find a strictly decreasing sequence {Vβ}β<ℵ1 of Gδ sets including γ X \ X ,
such that every open set including γ X \ X includes some Vβ . For each β < ℵ1, take pβ ∈ (Vβ+1 \ Vβ) ∩ X .

Let

Y = (γ X \ X) ∪ {pβ : β < ℵ1}.
Put a topology on Y by strengthening the subspace topology to make each {pβ} open. The usual Michael space argument
[26] (cf. [1] for more general arguments) shows that Y is Lindelöf, but its product with X is not. Indeed, Y is Lindelöf, since
each open set including γ X \ X includes all but countably many pβ ’s. To see that Y × X is not Lindelöf, note that the set
{(pβ, pβ): β < ℵ1} is closed and discrete in Y × X . �

X is absolute Borel if it is Borel in β X . In this case, β X \ X is a Baire subspace of β X . As Baire subspaces of compact T2
spaces are Lindelöf [21], Lindelöf absolute Borel spaces are of countable type. We therefore have the following.

Corollary 6.2. The Continuum Hypothesis implies productively Lindelöf absolute Borel spaces of weight � ℵ1 are σ -compact.
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Appendix A. Some remarks on elementary submodels and forcing

For the reader not so familiar with elementary submodels, we make some elementary remarks which may be helpful in
understanding the proofs in this paper which involve this method.

First of all, the sets Hθ in our proofs appear only for technical reasons; we really think instead of the universe V . For
elucidation of this point, see Chapter 24 of [25].

An elementary submodel M is countably closed if each countable subset of M is a member of M . For such models M ,
if X ∈ M , then the collection of countable sequences of members of X ∩ M is the same as the collection of countable se-
quences lying in M of members of X , i.e., (X ∩ M)ω = Xω ∩ M . A straightforward closing-off (Löwenheim–Skolem) argument
establishes that Hθ , for regular θ � 2ℵ0 , has a countably closed elementary submodel of size 2ℵ0 .

Definition A.1. For a topological space X with topology τ , XM is the topological space X ∩ M with the topology with basis
{U ∩ M: U ∈ τ ∩ M}.

The proofs of the following basic facts are illustrative.

Lemma A.2 (Folklore). Assume that X is a T2 space, M is a countably closed elementary submodel of Hθ for some sufficiently large
regular θ , and X ∈ M. Then: X ∩ M is a sequentially closed subset of X .

Proof. Let {xn}n<ω be a sequence of elements of X ∩ M converging to a point x ∈ X . As M is countably closed and each
xn ∈ M , {xn}n<ω ∈ M as well. By elementarity, M � {xn}n<ω converges to some point y. Since X is Hausdorff, x = y ∈ M , so
x ∈ X ∩ M . �
Proposition A.3. (Junqueira and Tall [24]) Assume that:

(a) X is a sequential T2 space;
(b) M is a countably closed elementary submodel of Hθ for some sufficiently large regular θ ; and
(c) X ∈ M.

Then:

(1) X ∩ M is a closed subset of X .
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(2) XM is a continuous image of X ∩ M.
(3) For each property P of X preserved by continuous images and closed subspaces, XM has the property P .

Proof. (1) follows from Lemma A.2, as X is sequential.
(2) The identity map from X ∩ M with the relative topology onto XM is continuous, since every open set in XM is open

in X ∩ M .
(3) follows from (1) and (2). �
Another observation about countably closed models is that, roughly speaking, if properties involving countable sets (such

as Lindelöfness) are true for the fragment of X lying in M , then M will demonstrate that, and thus, by elementarity, X will
really have that property. Thus, such properties as powerfully Lindelöf, (finitely) powerfully Hurewicz, Menger, etc., go “up”
from XM to X . On the other hand, it is not so clear what happens with a property like Alster, since there can be expected
to be compact subsets of X that are not in M .

We may, instead of going from a countably closed elementary submodel up to Hθ or the entire universe, go from the
universe to an extension of it by countably closed forcing. A typical argument is then that if some property involving the
existence of a countable object holds in the extension, it must have held in the original universe, since no new countable
subsets of V were added by the forcing. Thus, if an open cover or sequence of open covers of X in V acquires some nice
countable subcollection in the extension, it must have had that nice subcollection already. For example, if we find that X is
Lindelöf, Menger, Hurewicz, etc., in a countably closed forcing extension, it must have had those properties to begin with.
Again, a property such as Alster does not fit into this scheme, because countably closed forcing does not in general preserve
compactness, and moreover can adjoin new compact sets.

Problem A.4. If X is σ -compact in a countably closed forcing extension, is it σ -compact?

The analogous problem is also open for countably closed elementary submodels.

Problem A.5. If M is a countably closed elementary submodel of Hθ for a sufficiently large regular θ with X and its topology
as members, then if XM is σ -compact, is X also?

For compactness, both problems have positive answers, and “countably closed” is not needed. This was noted earlier in
the case of forcing; for elementary submodels, this was proved by L.R. Junqueira [23].
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