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PRODUCTS OF SPECIAL SETS OF REAL
NUMBERS

Abstract

We describe a simple machinery which translates results on algebraic
sums of sets of reals into the corresponding results on their cartesian
product. Some consequences are:

1. The product of a meager/null-additive set and a strong measure
zero/strongly meager set in the Cantor space has strong measure
zero/is strongly meager, respectively.

2. Using Scheepers’ notation for selection principles: Sfin(Ω, Ωgp) ∩
S1(O,O) = S1(Ω, Ωgp), and Borel’s Conjecture for S1(Ω, Ω) (or just
S1(Ω, Ωgp)) implies Borel’s Conjecture.

These results extend results of Scheepers and Miller, respectively.

1 Products in the Cantor Space.

The Cantor space C = {0, 1}N is equipped with the product topology. For
distinct x, y ∈ C, write N(x, y) = min{n : x(n) 6= y(n)}. Then the topology of
C is generated by the following metric:

d(x, y) =

{
1

N(x,y)+1 x 6= y

0 x = y

(so that d(x, y) ≤ 1 for all x, y ∈ C). A canonical measure µ is defined on C by
taking the product of the uniform probability measure on {0, 1}. Fix a natural
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number k, and consider the product space Ck. Define the product metric dk

on Ck by

dk((x0, . . . , xk−1), (y0, . . . , yk−1)) = max{d(x0, y0), . . . , d(xk−1, yk−1)}.

Then dk generates the topology of Ck. The measure on Ck is the product
measure µ× . . .×µ (k times). C, with the operation ⊕ defined by (x⊕y)(n) =
x(n) + y(n) mod 2, is a topological group, and therefore so is Ck for all k.

Lemma 1.1. The function Ψk : Ck → C defined by

Ψk(x0, . . . , xk−1)(mk + i) = xi(m)

for each m and each i < k is a bi-Lipschitz measure preserving group isomor-
phism.

Proof. Clearly Ψk is bijective. Assume that ~x = (x0, . . . , xk−1) and ~y =
(y0, . . . , yk−1) are members of Ck. Then for each m and each i < k,

Ψk(~x⊕ ~y)(mk + i)
= Ψk(x0 ⊕ y0, . . . , xk−1 ⊕ yk−1)(mk + i) = (xi ⊕ yi)(m)
= xi(m) + yi(m) mod 2 = Ψk(~x)(mk + i) + Ψk(~y)(mk + i) mod 2.

Thus, Ψk(~x⊕ ~y) = Ψk(~x)⊕Ψk(~y), and Ψk is a group isomorphism.
Now, assume that ~x = (x0, . . . , xk−1) and ~y = (y0, . . . , yk−1) are distinct

members of Ck, and let i be such that d(xi, yi) is maximal, that is, N =
N(xi, yi) is minimal. Then N(Ψk(~x), Ψk(~y)) ≥ kN , and therefore

d(Ψk(~x), Ψk(~y)) ≤ 1
kN + 1

< d(x, y).

Similarly, for distinct x, y ∈ C, if N(x, y) = mk+i where i < k, then N(Ψ−1
k (x),

Ψ−1
k (y)) ≥ m and

d(Ψ−1
k (x), Ψ−1

k (y)) ≤ 1
m + 1

≤ k

mk + i + 1
= k · d(x, y).

To see that Ψk is measure preserving, observe that the measure of a basic
open set U in C is 2−m, where m is the number of coordinates of U which are
not equal to {0, 1}. Consequently, the same assertion is true for Ck, where m
is the sum of numbers of such coordinates within each of the k coordinates
of Ck. This number m is invariant under Ψk; thus Ψk preserves measures of
basic open sets.
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This often allows us to restrict attention to subsets of C rather than subsets
of Ck for arbitrary k.

Abbreviation 1.2. P̃ (A) =
⋃

k∈N P (Ak).

Theorem 1.3. Assume that I,J ,K ⊆ P̃ (C), and that K is closed under taking
Lipschitz images. If

for each X ∈ I ∩ P (Ck) and Y ∈ J ∩ P (Ck), X × Y ∈ K,

then

for each X ∈ I ∩ P (Ck) and Y ∈ J ∩ P (Ck), X ⊕ Y ∈ K.

Proof. The mapping (x, y) 7→ x⊕ y is a Lipschitz mapping from X×Y onto
X ⊕ Y .

The converse of Theorem 1.3 also holds, and in a much stronger form. For
simplicity, we introduce the following notions.

Abbreviation 1.4. P ⊆ P̃ (C) is semiproductive if:

1. For each k, l, and X ∈ P ∩ Ck, if 0 is the zero element of Cl, then
X × {0} ∈ P; and

2. For each k, l, X ∈ P ∩ Ck, and a bi-Lipschitz measure preserving group
isomorphism Φ : Ck → Cl, Φ[X] ∈ P.

We will say that P is 0-productive if we only require that (1) is satisfied, and
iso-productive if we only require that (2) is satisfied.

Many properties of special sets of reals are semiproductive, e.g., Hausdorff
dimension, strong measure zero, the properties in Cichoń’s Diagram for small
sets [8] or in Scheepers’ Diagram (see Section 4) and its extensions [12, 13];
see [5, 10] for more examples.

As changing the order of coordinates is a bi-Lipschitz measure preserving
group isomorphism, we have the following.

Lemma 1.5. Assume that P ⊆ P̃ (C) is semiproductive. Then for each k, l,
and X ∈ P ∩ Ck, if 0 is the zero element of Cl, then {0} ×X ∈ P.

Theorem 1.6. Assume that I,J ,K ⊆ P̃ (C) such that I and J are semipro-
ductive, and K is iso-productive. If

for each X ∈ I ∩ P (C) and Y ∈ J ∩ P (C), X ⊕ Y ∈ K,
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then

for each X ∈ I and Y ∈ J , X × Y ∈ K.

Proof. Assume that X ∈ I ∩P (Ck) and Y ∈ J ∩P (Cl). Then X̃ = Ψk[X] ∈
I ∩ P (C), and Ỹ = Ψl[Y ] ∈ J ∩ P (C).

Ψ2[X̃ × Ỹ ] = Ψ2[(X̃ × {0})⊕ ({0} × Ỹ )]

= Ψ2[X̃ × {0}]⊕Ψ2[{0} × Ỹ ] = X ′ ⊕ Y ′.

Thus, X ′⊕Y ′ ∈ K. As Ψ2 is bijective, X̃× Ỹ = Ψ−1
2 [X ′⊕Y ′] ∈ K. As Ψk×Ψl

is a bi-Lipschitz measure preserving group isomorphism and Ψ−1
k × Ψ−1

l :
X̃ × Ỹ → X × Y is surjective, X × Y ∈ K.

Assume that I ⊆ P̃ (C). A subset X of Ck is I-additive if for each I ∈
I ∩ P (Ck), X ⊕ I ∈ I. Clearly if X, Y ⊆ C are I-additive, then X ⊕ Y is
I-additive. More generally, a subset X of Ck is (I,J )-additive if for each
I ∈ I ∩Ck, X ⊕ I ∈ J . Let I? and (I,J )? denote the classes of all I-additive
sets and (I,J )-additive sets, respectively.

Theorem 1.7. Assume that I,J ,K ⊆ P̃ (C) are iso-productive, and that
(J ,K)?, (I,J )? are 0-productive. Then for each X ∈ (J ,K)? and Y ∈
(I,J )?, X × Y ∈ (I,K)?. In particular, if I is iso-productive and I? is
0-productive, then I? is closed under taking finite products.

Proof. Assume that X ∈ (J ,K)? ∩ P (C), Y ∈ (I,J )? ∩ P (C), and I ∈ I.
Then Y ⊕ I ∈ J and therefore X ⊕ (Y ⊕ I) ∈ K. Thus X ⊕ Y ∈ (I,K)?.

Lemma 1.8. Assume that I,J ⊆ P̃ (C) are iso-productive. Then (I,J )? is
iso-productive.

Proof. Assume that X ∈ (I,J )? ∩ P (Ck) and Φ : Ck → Cl is a bi-Lipschitz
measure preserving group isomorphism. Then for each I ∈ I ∩ P (Cl),

Φ[X]⊕ I = Φ[X ⊕ Φ−1[I]].

As Φ−1[I] ∈ I, X ⊕ Φ−1[I] ∈ J and therefore Φ[X]⊕ I ∈ J , that is, Φ[X] ∈
(I,J )?.

Thus (J ,K)? and (I,J )? are semiproductive, and the theorem follows
from Theorem 1.6.

Following is a useful criterion for the 0-productivity required in Theorem
1.7.
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Lemma 1.9. Assume that I,J ⊆ P̃ (C) are iso-productive, and for the element
0 ∈ C and each X ∈ (I,J )?∩P (C), Ψ2[X×{0}] ∈ (I,J )?. Then (I,J )? is 0-
productive. In particular, if I is iso-productive and and for each X ∈ I?∩P (C),
Ψ2[X × {0}] ∈ I?, then I? is 0-productive.

Proof. Assume that X ∈ (I,J )? ∩ P (Ck) and fix l. By Lemma 1.8, X̃ =
Ψk[X] ∈ (I,J )?∩P (C). Thus Ψ2◦(Ψk×Ψl)[X×{0}] = Ψ2[X̃×{0}] ∈ (I,J )?.
Applying Lemma 1.8 again, we get that X × {0} ∈ (I,J )?.

We now give some applications. Let X be a metric space. Following Borel,
we say that X has strong measure zero if for each sequence of positive reals
{εn}n∈N, there exists a cover {In}n∈N of X such that diam(In) < εn for all n.
X has the Hurewicz property if for each sequence {Un}n∈N of open covers of X
there exist finite subsets Fn ⊆ Un, n ∈ N, such that X ⊆

⋃
n

⋂
m>n ∪Fn. Let

SMZ (respectively, H) denote the collections of metric spaces having strong
measure zero (respectively, the Hurewicz property).

The following theorem of Scheepers will serve as a “test case” for our
approach.

Theorem 1.10 (Scheepers [11]). Let X be a strong measure zero metric
space which also has the Hurewicz property. Then for each strong measure
zero metric space Y , X × Y has strong measure zero.

Scheepers’ proof of Theorem 1.10 is by a reduction of th Hurewicz property
to the so called “grouping property”, which is proved using a result from
topological game-theory. We will present alternative proofs for the case that
the spaces are sets of real numbers. We first observe that this follows from the
corresponding theorem with X⊕Y instead of X×Y , which was proved in [7]:
Since the collections H∩ P̃ (C) and SMZ∩ P̃ (C) are semiproductive, Theorem
1.6 applies. (For another proof of Scheepers’ Theorem in C, see Theorem A.2
in the appendix.)

We now treat the classes of meager-additive and null-additive sets. Let M
and N denote the meager (i.e., first category) and null (i.e., measure zero)
sets, respectively.

Theorem 1.11. M?∩P̃ (C) and N ?∩P̃ (C) are semiproductive, and are closed
under taking finite products.

Proof. Clearly, M∩ P̃ (C) and N ∩ P̃ (C) are semiproductive. By Theorem
1.7, it is enough to show that the classes M? ∩ P̃ (C) and N ? ∩ P̃ (C) are
0-productive. We first treat M?.

Lemma 1.12 (Bartoszyński-Judah [1, Theorem 2.7.17]). A subset X
of C is meager-additive if, and only if, for each increasing sequence {mn}n∈N
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there exist a sequence {ln}n∈N and y ∈ C such that for each x ∈ X and all but
finitely many n,

ln ≤ mk < mk+1 ≤ ln+1 and x�[mk,mk+1) = y�[mk,mk+1)

for some k. (In this case we say that {ln}n∈N and y are appropriate for
{mn}n∈N and X.)

We will prove the sufficient criterion of Lemma 1.9. Assume that X ∈
M? ∩ P (C), and let X̃ = Ψ2[X × {0}]. We must show that X̃ ∈ M?. Let
an increasing sequence {mn}n∈N be given. Choose an increasing sequence
{m′

n}n∈N of even numbers such that for all but finitely many n, there exists k
such that m′

n ≤ mk < mk+1 ≤ m′
n+1.

Apply Lemma 1.12 to obtain {ln}n∈N and y which are appropriate for
{m′

n/2}n∈N and X. By the definition of Ψ2, we get that {2ln}n∈N and Ψ2(y, 0)
are appropriate for {m′

n}n∈N and Ψ2[X × {0}]. In particular, they are appro-
priate for {mn}n∈N and Ψ2[X × {0}]. This shows that M? is 0-productive.

Using similar arguments, the fact that N ? ∩ P̃ (C) is 0-productive follows
from the following.

Lemma 1.13 (Shelah [1, Theorem 2.7.18]). A subset X of C is null-
additive if, and only if, for every increasing sequence {mn}n∈N there ex-
ists a sequence {Sn}n∈N such that each Sn is a set of at most n functions
from [mn,mn+1) to {0, 1}, and for each x ∈ X and all but finitely many n,
x�[mn,mn+1) ∈ Sn.

This finishes the proof of Theorem 1.11.

Proposition 1.14 (folklore). For all k, a set X ⊆ Ck has strong measure
zero if, and only if, for each meager M ⊆ Ck, X ⊕M 6= Ck.

Proof. Assume that X ⊆ Ck has strong measure, and M ⊆ Ck is mea-
ger. Then by the Galvin-Mycielski-Solovay Theorem, Ψk[X ⊕M ] = Ψk[X]⊕
Ψk[M ] 6= C, and therefore X ⊕M 6= Ck.

Conversely, assume that X ⊆ Ck and for each meager M ⊆ Ck, X ⊕M 6=
Ck. Then for each meager M ⊆ C, X ⊕ Ψ−1

k [M ] 6= Ck, therefore Ψk[X ⊕
Ψ−1

k [M ]] = Ψk[X]⊕M 6= C, thus Ψk[X] has strong measure zero, and therefore
X has strong measure zero.

Every set of reals with the Hurewicz property as well as strong measure zero
is meager-additive ([7], or Theorem A.3 below). Consequently, the following
theorem extends Scheepers’ Theorem 1.10 in the case that X, Y ⊆ C.
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Theorem 1.15. Assume that X ∈ M? ∩ P̃ (C) and Y ∈ SMZ ∩ P̃ (C). Then
X × Y ∈ SMZ.

Proof. By Theorem 1.11, M? ∩ P̃ (C) is semiproductive. Recall that SMZ ∩
P̃ (C) is semiproductive too. By the Galvin-Mycielski-Solovay Theorem (Propo-
sition 1.14 for k = 1), the conditions of Theorem 1.6 hold, and its consequence
tells what we are looking for.

To prove the dual result, we need the following lemma. For a set J denote
Jx = {y : (x, y) ∈ J} and Jy = {x : (x, y) ∈ J}. Say that a family J which
does not contain any Ck as element is a Fubini family if, whenever J ∈ J ∩Ck+l,
we have that

{x ∈ Ck : Jx 6∈ J } ∈ J , and {y ∈ Cl : Jy 6∈ J } ∈ J . (1)

The most important examples for Fubini families are M (Kuratowski-Ulam
Theorem) and N (Fubini Theorem). To understand what we really prove, we
will say that J is a weakly Fubini family if “ ∈ J ” and “ ∈ J ” in (1) are
replaced by “ 6= Ck” and “ 6= Cl”, respectively. Clearly, each Fubini family is
a weakly Fubini family.

A set X ⊆ Ck is not J -covering if for each J ∈ J ∩ P (Ck), X ⊕ J 6= Ck.

Lemma 1.16. Assume that J is a weakly Fubini family. Then the family of
not J -covering sets is 0-productive.

Proof. Assume that X ⊆ Ck is not J -covering, 0 ∈ Cl, and J ∈ J ∩P (Ck+l).
As J is a weakly Fubini family, there exists y ∈ Cl such that Jy ∈ J . Thus,
((X × {0})⊕ J)y = X ⊕ Jy 6= Ck, therefore (X × {0})⊕ J 6= Ck+l.

A set X ⊆ Ck is strongly meager if it is not N -covering. Using the same
proof as in Theorem 1.15, we get the following.

Theorem 1.17. The product of a null-additive set in Ck and a strongly meager
set in Cl is strongly meager.

It is folklore that a product of strong measure zero sets need not have
strong measure zero (e.g., [5]), and that the product of strongly meager sets
need not be strongly meager. To see the last assertion, we say that a set S ⊆ C
is κ-Sierpiński if |S| ≥ κ but for each null set N , |S ∩N | < κ. Observe that
the diagonal is null in C2.

Theorem 1.18. Assume that cov(N ) = b = c. Then there exists a strongly
meager set of reals S ⊆ C such that S2 ⊕∆ = C2, where ∆ = {(x, x) : x ∈ C}.
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Proof. Since cov(N ) = c we can construct, as in [12, Lemma 42], a cov(N )-
Sierpiński set S such that S ⊕ S = C. Then S2 ⊕ ∆ = C2: Given y, z ∈ C,
choose s, t ∈ S such that s⊕ t = y ⊕ z, and take x = s⊕ y. Then s⊕ x = y,
and

t⊕ x = t⊕ (s⊕ s)⊕ x = (s⊕ t)⊕ (s⊕ x) = (y ⊕ z)⊕ y = z,

thus (s, t) ⊕ (x, x) = (y, z). Since b = cov(N ), S is a b-Sierpiński set and by
[12, p. 376], every Borel image of S is bounded. Moreover, for each null set
N , |S ∩ N | < cov(N ). By a result of Pawlikowski (see [1] – Definition 8.5.7,
the observation after it, and Theorem 8.5.12), these two properties imply that
S is strongly meager.

2 Products in the Euclidean Space.

As the mapping from Rk × Rk to Rk defined by (x, y) 7→ x + y is Lipschitz,
Theorem 1.3 remains true in the Euclidean space Rk. However, we are unable
to prove Theorem 1.6 (in its current form) for the Euclidean space (〈Rk, +〉
and 〈R, +〉 are not homeomorphic: Rk remains connected after removing a
point). We can, though, obtain similar results.

Abbreviation 2.1. A collection P ⊆ P̃ (R) is bi-0-productive if for each k, l,
and X ∈ P ∩ Rk, if 0 is the zero element of Rl, then X × {0}, {0} ×X ∈ P.

Theorem 2.2. Assume that I,J ,K ⊆ P̃ (R) and I,J are bi-0-productive. If

for each k and all X ∈ I ∩P (Rk) and Y ∈ J ∩P (Rk), X +Y ∈ K,

then

for each X ∈ I and Y ∈ J , X × Y, Y ×X ∈ K.

Proof. Assume that X ∈ I ∩ P (Rk) and Y ∈ J ∩ P (Rl). Then

X × Y = (X × {0}) + ({0} × Y ).

As I and J are bi-0-productive, X × {0} ∈ I ∩ P (Rk+l) and {0} × Y ∈
J ∩ P (Rk+l), therefore X × Y ∈ K. Similarly, Y ×X ∈ K.

Theorem 2.3. Assume that I,J ,K ⊆ P̃ (R), and that (J ,K)? and (I,J )?

are bi-0-productive. Then for each X ∈ (J ,K)? and Y ∈ (I,J )?, X × Y, Y ×
X ∈ (I,K)?. In particular, if I? is bi-0-productive, then I? is closed under
taking finite products.
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Proof. Assume that X ∈ (J ,K)?∩P (Rk), Y ∈ (I,J )?∩P (Rk), and I ∈ I∩
P (Rk). Then Y +I ∈ J and therefore X+(Y +I) ∈ K. Thus X+Y ∈ (I,K)?.
As (J ,K)? and (I,J )? are bi-0-productive, our theorem follows from Theorem
2.2.

It was noticed by Marcin Kysiak that one can use our arguments to obtain
Scheepers’ Theorem 1.10 in the Euclidean space. To see this, one simply has
to generalize the corresponding theorem on sums [7] from k = 1 to arbitrary
k. The generalization is straightforward. In Section 3 we show that in fact,
this generalization is not necessary.

The analogue of Theorem 1.11 in the Euclidean space does not seem to
follow from the results in this paper.

Problem 2.4. Assume that X ⊆ R is meager- (respectively, null-) additive.
Does it follow that X × {0} is meager- (respectively, null-) additive?

Remark 2.5. We can prove that every meager-additive subset of the Cantor
space, when viewed as a subset of R, is meager-additive (with respect to the
usual addition in R); and similarly for null-additive (in both cases, the other
direction is still open). Consequently, the classes of meager-additive and null-
additive each contains a nontrivial subclass which is preserved under taking
finite products. We plan to treat this result elsewhere.

3 The Euclidean Space through the Looking Glass.

The results in Section 2 are not easy to use, as one should verify first that the
additive results given in the literature for R actually hold in Rk for all k. We
suggest here another approach, which covers some of the cases of interest.

Definition 3.1. The function T : {0, 1}N → [0, 1] is defined by

x 7→
∑
i∈N

x(i)
2i+1

= 0.x(0)x(1)x(2) . . . ,

where the last term is in base 2. Let C denote the collection of all eventu-
ally constant elements of {0, 1}N, and Q2 = T [C] denote the 2-adic rational
numbers in [0, 1].

Lemma 3.2 (folklore). 1. T is a uniformly continuous surjection.

2. C is countable.

3. T : {0, 1}N\C → [0, 1]\Q2 is a homeomorphism which preserves measure
in both directions.
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Proof. (1) T is continuous on its compact domain, and clearly it is onto.
(2) is obvious, and the only nontrivial part of (3) is that T−1 is continuous

on [0, 1] \ Q2 (it is not uniformly continuous: Take xn = 0.10n01 and yn =
0.01n01, then xn − yn → 0, but d(T−1(xn), T−1(yn)) = 1 for all n.). Write ỹ
for T−1(y). If xn → x are elements of [0, 1] \ Q2 then from some n onwards,
the x̃n(0) = x̃(0): Assume that this is not the case. Then by moving to a
subsequence we may assume that for all n, x̃(0) 6= x̃n(0). Assume that x̃(0) = 0
and x̃n(0) = 1 for all n (the other case is similar). Let k = min{m > 0 :
x(m) = 0} (recall that x̃ is not eventually constant). Then x = 0.01k−10 . . . ,
thus

xn − x ≥ 0.1− 0.01k−101 = 0.1− 0.01k = 0.0k1 =
1

2k+1

for all n, a contradiction.
An inductive argument shows that for each k, x̃n(k) = x̃(k) for all large

enough n.

In principle, we can use the function T to translate questions about prod-
ucts in R into questions about products in C, apply the results of Section 1,
and translate back to R. The problem is that in our test-case, Scheepers’ The-
orem 1.10 in R, we must deal with strong measure zero sets. By (1) of Lemma
3.2, if Y has strong measure zero then so does T [Y ]. The other direction does
not follow from Lemma 3.2, since a homeomorphic image of a strong measure
zero set need not have strong measure zero [9] (see [15] for a simple proof).

Proposition 3.3. For each k, T k : Ck → [0, 1]k preserves strong measure zero
sets in both directions.

Proof. Since T is uniformly continuous, T k is uniformly continuous. Thus,
if X ⊆ Ck has strong measure zero, then so does T k[X].

We now prove the other direction. The following is an easy exercise.

Lemma 3.4 (folklore). Assume that there exists f : N → N such that the
metric space (X, d) has the following property: For each sequence {εn}n∈N of
positive reals, there exist a cover {In

m : n ∈ N,m ≤ f(n)} of X satisfying
diam(In

m) < εn for each n and m. Then (X, d) has strong measure zero.

To use Lemma 3.4, we make the following observation.

Lemma 3.5. Assume that I ⊆ [0, 1] and diam(I) < ε. Then there exist
A0, A1 ⊆ C, both with diameter < ε, such that T−1[I] ⊆ A0 ∪A1.
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Proof. Let n be the maximal such that 2n−1ε ≤ 1. Then there exists k <
2n − 1 such that

I ⊆
[

k

2n
,
k + 2

2n

]
=

[
k

2n
,
k + 1

2n

]
∪

[
k + 1

2n
,
k + 2

2n

]
.

There exist sequences s0, s1 ∈ {0, 1}n such that for i = 0, 1, if Ai = {x ∈ C :
si ⊆ x}, then T [Ai] = [(k + i)/2n, (k + i + 1)/2n].

Assume that Y ⊆ [0, 1]k has strong measure zero, and {εn}n∈N is a sequence
of positive reals. Let In ⊆ [0, 1]k be such that diam(In) < εn and Y ⊆

⋃
n In.

Fix n. Then In is contained in the product of k intervals, In
1 , . . . In

k ⊆ [0, 1],
each with diameter < εn. For each i = 1, . . . , k, use Lemma 3.5 to obtain sets
An,i

0 , An,i
1 as in the lemma. Then

In ⊆
⋃

s∈{0,1}k

Πk
i=1T [An,i

s(i)] = T k

 ⋃
s∈{0,1}k

Πk
i=1A

n,i
s(i)

 ,

so that T−k[In] is covered by 2k sets of diameter < εn. Since the sets In cover
Y , we have by Lemma 3.4 that T−k[Y ] has strong measure zero.

We now show how to prove Scheepers’ Theorem in the Euclidean space.

Lemma 3.6. Assume that I is preserved under taking closed subsets, uni-
formly continuous images, and countable unions, and that R 6∈ I. Then for
each X ∈ I ∩ P (Rk) and a countable set Q ⊆ R there exists x ∈ Rk such that
(x + X) ∩

⋃
m<k Rm ×Q× Rk−m−1 = ∅.

Proof. The assumptions imply that for each i < k, the projection Xi = πi[X]
on the ith coordinate is a member of I. As Q is countable, Q − Xi 6= R.
Choose xi 6∈ Q−Xi. Then (xi + Xi)∩Q = ∅. Take x = (x0, . . . , xk−1). Then
(x + X) ∩

⋃
m<k Rm ×Q× Rk−m−1 = ∅.

Assume that X ∈ H ∩ SMZ ∩ P (Rk) and Y ∈ SMZ ∩ P (Rl). It is well
known (and easy to see) that H and SMZ satisfy the assumptions of Lemma
3.6. Take

Q =
⋃

m,n∈Z
(m ·Q2 + n).

Then by Lemma 3.6, we may assume that X is disjoint from
⋃

m<k Rm×Q×
Rk−m−1, and Y is disjoint from

⋃
m<l Rm ×Q× Rl−m−1.

For each n, set Xn = X ∩ [−n, n]k and Yn = Y ∩ [−n, n]l. Then Xn is a
closed subset of X and therefore has the Hurewicz property. Moreover, Xn
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and Yn have strong measure zero, and X × Y =
⋃

n Xn × Yn. Since SMZ
is preserved under countable unions, it is enough to show that Xn × Yn has
strong measure zero for each n. Transforming (each coordinate of) Xn, Yn

with the bi-Lipschitz homeomorphism x 7→ (n + x)/2n, we may assume (by
our choice of Q!) that Xn, Yn ⊆ ([0, 1] \Q2)k.

So assume that X ∈ H∩SMZ∩P (([0, 1]\Q2)k), and Y ∈ SMZ∩P (([0, 1]\
Q2)l) Since T k : Ck → ([0, 1] \ Q2)k is a homeomorphism, T−k[X] has the
Hurewicz property. By Proposition 3.3, T−k[X], T−l[Y ] ⊆ C have strong mea-
sure zero. By Scheepers’ Theorem in C, T−k[X]× T−l[Y ] has strong measure
zero. As T k × T l is uniformly continuous, X × Y has strong measure zero.

4 Borel’s Conjecture and Conjunction of Properties.

To put things in a wider context, we briefly describe the general framework.
Let X be a topological space. An open cover U of X is an ω-cover of X if
X is not in U and for each finite subset F of X, there is a set U ∈ U such
that F ⊆ U . U is a γ-cover of X if it is infinite and for each x in X, x ∈ U
for all but finitely many U ∈ U . Let O, Ω, and Γ denote the collections of all
countable open covers, ω-covers, and γ-covers of X, respectively. Let U and
V be collections of covers of a space X. Following are selection hypotheses
which X might satisfy or not satisfy.

S1(A ,B): For each sequence {Un}n∈N of members of A , there exist members
Un ∈ Un, n ∈ N, such that {Un}n∈N ∈ B.

Sfin(A ,B): For each sequence {Un}n∈N of members of A , there exist finite
(possibly empty) subsets Fn ⊆ Un, n ∈ N, such that

⋃
n∈N Fn ∈ B.

Ufin(A ,B): For each sequence {Un}n∈N of members of A which do not
contain a finite subcover, there exist finite (possibly empty) subsets
Fn ⊆ Un, n ∈ N, such that {∪Fn}n∈N ∈ B.

Ufin(O, Γ) is the Hurewicz property, Sfin(O,O) is the Menger property,
S1(O,O) is Rothberger’s property C ′′, and S1(Ω, Γ) is the γ-property.

Many equivalences hold among these properties, and the surviving ones
appear in Figure 1 (where an arrow denotes implication), to which no arrow
can be added except perhaps from Ufin(O, Γ) or Ufin(O, Ω) to Sfin(Γ, Ω) [3].

Let us write BC(P ) for the Borel Conjecture for metric spaces with prop-
erty P , that is, the hypothesis that every metric space with property P is
countable. Laver proved that BC(SMZ) is consistent. Since S1(O,O) im-
plies strong measure zero, it follows that BC(S1(Ω, Γ)), BC(S1(Ω, Ω)), and
BC(S1(O,O)) are all consistent. On the other hand, all other classes in the
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Ufin(O, Γ) // Ufin(O, Ω) // Sfin(O,O)

Sfin(Γ, Ω)

44jjjjjjj

S1(Γ, Γ) //

55kkkkkkkkkkkkkkkkkkk
S1(Γ, Ω) //

55kkkkkkk
S1(Γ,O)

77nnnnnnnnnnnnnnnn

Sfin(Ω, Ω)

OO

S1(Ω, Γ) //

OO

S1(Ω, Ω)

OO

//

55kkkkkk
S1(O,O)

OO

Figure 1: The Scheepers Diagram

Scheepers Diagram provably contain uncountable sets of reals [3, 2], and there-
fore cannot satisfy BC.

In [6] Miller proves that BC(S1(O,O)) implies BC(SMZ), but BC(S1(Ω, Γ))
does not imply BC(SMZ). We will extend this result. With regards to
the Scheepers Diagram 1, the best we can get is that BC(S1(Ω, Ω)) implies
BC(SMZ) (and therefore BC(S1(Ω, Γ)) does not imply BC(S1(Ω, Ω)) ). We
will prove a stronger result.

Definition 4.1. For a fixed topological space X, Ωgp denotes the collection
of open ω-covers U of X such that: There exists a partition P of U into finite
sets such that for each finite F ⊆ X and all but finitely many F ∈ P, there
exists U ∈ F such that F ⊆ U [4].

S1(Ω, Ωgp) is strictly stronger than S1(Ω, Ω) [4].

Theorem 4.2. BC(S1(Ω, Ωgp)) implies (and is therefore equivalent to)
BC(SMZ).

Proof. If ℵ1 = b then by [2] there exists an uncountable set of reals X
satisfying S1(Ω, Ωgp).

Assume that ℵ1 < b, and BC(SMZ) fails. Take any strong measure zero
set X with |X| = ℵ1. Then |X| < c and by a result of Carlson [1, Lemma
8.1.9], we may assume that X ⊆ R. As |X| < b, all finite powers of X have
the Hurewicz property. By Scheepers’ Theorem 1.10, X2 = X ×X has strong
measure zero, therefore X3 = X ×X2 has strong measure zero, etc.

By [4], S1(Ω, Ωgp) is equivalent to all finite powers having strong measure
zero and satisfying the Hurewicz property.

The arguments in the last proof actually establish the following.
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Theorem 4.3. For a set of reals X, the following are equivalent:

1. X satisfies Sfin(Ω, Ωgp) and has strong measure-zero,

2. X satisfies Sfin(Ω, Ωgp) and S1(O,O),

3. X satisfies Sfin(Ω, Ωgp) and is meager-additive,

4. X satisfies Sfin(Ω, Ωgp) and S1(Ω, Ω),

5. X satisfies S1(Ω, Ωgp).

Proof. Clearly, 5 ⇒ 4 ⇒ 2 ⇒ 1, and 3 ⇒ 1.
(1 ⇒ 5) Assume that (1) holds. In [4] it is proved that Sfin(Ω, Ωgp) is

equivalent to satisfying the Hurewicz property Ufin(O, Γ) in all finite powers.
By Scheepers’ Theorem 1.10, all finite powers of X satisfy Ufin(O, Γ) and
have strong measure zero. By [4], X satisfies S1(Ω, Ωgp) (1 ⇒ 3) In [7] it is
proved that every strong measure zero set of reals with the Hurewicz property
is meager additive.

The theorem also holds when X ⊆ C. In this case, the quoted assertion in
the last proof can be proved directly – see Theorem A.3 in the appendix.
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A Direct Proofs of Quoted Theorems.

Following is Bartoszyński’s (unpublished) combinatorial proof of Scheepers’
Theorem 1.10 in C. The proof uses the following characterization of strong
measure zero.

Lemma A.1 ([1, Lemma 8.1.13]). For X ⊆ C, the following are equivalent:

1. X has strong measure zero,

2. For each f ∈ NN there exists a function g such that g(n) ∈ {0, 1}f(n)

for all n, and for each x ∈ X there exist infinitely many n such that
x � f(n) = g(n),

3. For each increasing sequence {mn}n∈N there exists z ∈ C such that for
each x ∈ X there exist infinitely many n such that x�[mn,mn+1) =
z�[mn,mn+1).
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Let N↗N denote the subspace of the Baire space NN consisting of the in-
creasing functions in NN. In [14] it is proved that if X has the Hurewicz
property and Ψ : X → N↗N is continuous, then Ψ[X] admits some slalom
h ∈ N↗N, that is, such that for each x ∈ X and all but finitely many n, there
exists k such that h(n) ≤ Ψ(x)(k) < h(n + 1). This fact will be used in the
proof.

Theorem A.2. Assume that X ⊆ {0, 1}N has the Hurewicz property and
strong measure zero, and Y ⊆ C has strong measure zero. Then X × Y has
strong measure zero.

Proof (Bartoszyński). Fix f ∈ N↗N and let g be as in Lemma A.1 for X
and f . Define a function Ψ : X → N↗N so that for each x ∈ X, Ψ(x) is the
increasing enumeration of the set {n : x � f(n) = g(n)}. Then Ψ is continuous,
thus there exists h ∈ N↗N such that for each x ∈ X and all but finitely many
n, there exists k such that h(n) ≤ Ψ(x)(k) < h(n + 1).

Consider a mapping Φ defined on Y by

Φ(y)(n) = 〈(g(k), y � f(k)) : h(n) ≤ k < h(n + 1)〉.

Then Φ is uniformly continuous. Thus (essentially, by Lemma A.1) there exists
a function r such that for all y ∈ Y there exist infinitely many n such that
Φ(y)(n) = r(n). From r we decode a function s such that s(n) ∈ {0, 1}f(n) ×
{0, 1}f(n) by s(k) = r(n)(k) where n is such that h(n) ≤ k < h(n + 1).

Then for all x ∈ X and y ∈ Y there exist infinitely many n such that
(x � f(n), y � f(n)) = s(n), which shows that X × Y has strong measure
zero.

Using the bi-Lipschitz transformations Ψk of Section 1, we obtain Scheep-
ers’ Theorem in P̃ (C) from Theorem A.2.

We can prove a result which is stronger (in light of the previous sections).
Following is a direct, combinatorial proof of one of the main theorems in [7]
when restricted to the Cantor space.

Theorem A.3 ([7]). Assume that X ∈ P̃ (C), X has the Hurewicz property
Ufin(O, Γ), and strong measure zero. Then X is meager-additive.

Proof. By Section 1, it suffices to prove the result for X ⊆ C.
Assume that {mn}n∈N is an arbitrary increasing sequence. By Lemma

1.12, it suffices to find a sequence {ln}n∈N and z ∈ C such that for each x ∈ X
and all but finitely many n, ln ≤ mk < mk+1 ≤ ln+1 and x�[mk,mk+1) =
z�[mk,mk+1) for some k.
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By Lemma A.1, there exists z ∈ C such that for each x ∈ X there exist
infinitely many n such that x�[mn,mn+1) = z�[mn,mn+1). Again, for each
x ∈ X let Ψ(x) be the increasing enumeration of these ns, and use the fact
that X has the Hurewicz property to find a slalom h ∈ N↗N for Ψ[X].

Take ln = mh(n) for each n. Fix x ∈ X. Since h is a slalom for Ψ[X], for
all but finitely many n there exists k such that for i = Ψ(x)(k), h(n) ≤ i <
h(n + 1). Then

ln = mh(n) ≤ mi < mi+1 ≤ mh(n+1) = ln+1,

and by the definition of Ψ(x), x�[mi,mi+1) = z�[mi,mi+1).
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