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We study the preservation of selective covering properties, including classic ones
introduced by Menger, Hurewicz, Rothberger, Gerlits and Nagy, and others, under
products with some major families of concentrated sets of reals.
Our methods include the projection method introduced by the authors in an earlier
work, as well as several new methods. Some special consequences of our main results
are (definitions provided in the paper):

(1) Every product of a concentrated space with a Hurewicz S1(Γ,O) space satisfies
S1(Γ,O). On the other hand, assuming the Continuum Hypothesis, for each
Sierpiński set S there is a Luzin set L such that L×S can be mapped onto the
real line by a Borel function.

(2) Assuming Semifilter Trichotomy, every concentrated space is productively
Menger and productively Rothberger.

(3) Every scale set is productively Hurewicz, productively Menger, productively
Scheepers, and productively Gerlits–Nagy.

(4) Assuming d = ℵ1, every productively Lindelöf space is productively Hurewicz,
productively Menger, and productively Scheepers.

A notorious open problem asks whether the additivity of Rothberger’s property may
be strictly greater than add(N ), the additivity of the ideal of Lebesgue-null sets of
reals. We obtain a positive answer, modulo the consistency of Semifilter Trichotomy
(u < g) with cov(M) > ℵ1.
Our results improve upon and unify a number of results, established earlier by many
authors.
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Fig. 1. The Scheepers Diagram.

1. Introduction

All topological spaces in this paper are assumed, without further mention, to be Tychonoff. Since the
results presented here are new even in the case where the spaces are subsets of the real line, readers who
wish to do so may assume throughout that we deal with sets of real numbers.

We study selective covering properties of products of topological spaces. Our results, that answer questions
concerning classic covering properties, are best perceived in the modern framework of selection principles, to
which we provide here a brief introduction.2 This framework was introduced by Scheepers in [27] to study,
in a uniform manner, a variety of properties introduced in different mathematical disciplines, since the early
1920’s, by Menger, Hurewicz, Rothberger, Gerlits and Nagy, and others.

Let X be a topological space. We say that U is a cover of X if X =
⋃

U , but X /∈ U . Often, X is
considered as a subspace of another space Y , and in this case we always consider covers of X by subsets
of Y , and require instead that no member of the cover contains X. Let O(X) be the family of open covers
of X. Define the following subfamilies of O(X): U ∈ Ω(X) if each finite subset of X is contained in some
member of U . U ∈ Γ(X) if U is infinite, and each element of X is contained in all but finitely many members
of U .

Some of the following statements may hold for families A and B of covers of X.

(
A
B

)
Each member of A contains a member of B.

S1(A ,B) For each sequence 〈Un ∈ A : n ∈ N〉, there is a selection 〈Un ∈ Un: n ∈ N〉 such that {Un: n ∈
N} ∈ B.

Sfin(A ,B) For each sequence 〈Un ∈ A : n ∈ N〉, there is a selection of finite sets 〈Fn ⊆ Un: n ∈ N〉 such
that

⋃
n Fn ∈ B.

Ufin(A ,B) For each sequence 〈Un ∈ A : n ∈ N〉, where no Un contains a finite subcover, there is a selection
of finite sets 〈Fn ⊆ Un: n ∈ N〉 such that {

⋃
Fn: n ∈ N} ∈ B.

We say, e.g., that X satisfies S1(O,O) if the statement S1(O(X),O(X)) holds. This way, S1(O,O) is a
property (or a class) of topological spaces, and similarly for all other statements and families of covers.
In the realm of Lindelöf spaces,3 each nontrivial property among these properties, where A ,B range over
O,Ω,Γ, is equivalent to one in Fig. 1 [27,14]. In this diagram, an arrow denotes implication.

2 This introduction is adopted from [21]. Extended introductions to this field are available in [16,28,31].
3 Indeed, all properties in the Scheepers Diagram (Fig. 1), except for those having Γ in the first argument, imply being Lindelöf.
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The extremal properties in this diagram are classic and were introduced by Menger (Sfin(O,O), under
a difference guise), Hurewicz (Ufin(O,Γ)), Rothberger (S1(O,O)), and Gerlits and Nagy (

(Ω
Γ
)
). The other

ones were introduced and studied more recently, by many authors.
In this diagram, we indicate below each class P its critical cardinality non(P ), the minimal cardinality

of a space not in the class, and its (provable) additivity number add(P ), the minimal number of spaces
possessing this property, whose union does not have this property. These cardinals are all combinatorial
cardinal characteristics of the continuum, details about which are available in [12]. Here, M,N are the
families of meager (i.e., Baire first category) sets in R and Lebesgue null sets in R, respectively. In cases
where only lower bounds on add(P ) are given, cf(non(P )) is an upper bound.

On occasions, we will also consider the classes of covers B, BΩ and BΓ, defined as O, Ω and Γ were
defined, replacing open cover by countable Borel cover. The properties thus obtained have rich history of
their own [29], and for Lindelöf spaces, the Borel variants of the studied properties are (usually, strictly)
stronger than the open ones [29].

Many additional—classic and new—properties were or can be studied in relation to the Scheepers Dia-
gram. Some examples of this kind are provided in the present paper.

The following definition and observation are useful.

Definition 1.1. Let P be a property (or class) of topological spaces.4 A topological space X is productively
P if X × Y has the property P for each Y satisfying P . P ↑ is the property of having all finite powers
satisfying P .

In this notation, S1(O,O)↑ = S1(Ω,Ω) [25] and Sfin(O,O)↑ = Sfin(Ω,Ω) [14]. If X is productively P and
the singleton space satisfies P , then X satisfies P . Moreover, we have the following.

Lemma 1.2. Let X be a productively P topological space. Then:

(1) Every finite power of X is productively P .
(2) X is productively P ↑.
(3) Every finite power of X is productively P ↑.

Proof. (1) By induction on the power of X, Xk × Y has the property P if Y has it.
(2) Let Y be in P ↑. For each k, (X × Y )k ∼= Xk × Y k. Apply (1).
(3) By (1) and (2). �
In particular, if X is productively S1(O,O), then it is also productively S1(Ω,Ω), and similarly for Sfin.

Several additional properties in the literature are characterized by having the form P ↑ for a property P in
the Scheepers Diagram, and the same comment applies.

2. Concentrated spaces and S1(Γ,Γ)

Let κ be an uncountable cardinal. Following Besicovitch [9,10], we say that a topological space X is
κ-concentrated if there is a countable set D ⊆ X such that |X \ U | < κ for every open set U ⊇ D. Several
major examples of families of concentrated spaces will be considered later.

A special case of Theorem 11(3) in Babinkostova–Scheepers [3] is that for each concentrated metric
space C, if Y satisfies Ufin(O,Γ) and S1(O,O), then C × Y satisfies S1(O,O). Theorem 3.1 in the more
recent paper [37] implies, in particular, that it suffices to assume that C is a cov(M)-concentrated space.

4 The property P may or may not stand for “P-space”.
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Our first observation is that the methods of the paper [37] imply a similar result for S1(Γ,Γ). The proof
given here is slightly more general than the one that may be extracted from [37]. Initially, we only stated
in the following lemma that X satisfies S1(Γ,O). That in fact X satisfies S1(Γ,Ω) was pointed out to us by
the referee.

Lemma 2.1. Let a topological space X be a union of less than cov(M) many S1(Γ,Γ) spaces. Then X satisfies
S1(Γ,Ω).

Proof. Let {Xα: κ < cov(M)} be a family of S1(Γ,Γ) spaces. As S1(Γ,Γ) is additive, we may assume that
this family is closed under finite unions.

Let X =
⋃

α<κ Xα, and let Un ∈ Γ(X) for all n. As Γ(X) is closed taking infinite subsets, we may assume
that we can enumerate Un = {Un

m: m ∈ N} for all n.
For each α < κ, let fα ∈ NN be such that {Un

fα(n): n ∈ N} ∈ Γ(Xα). As κ < cov(M), there is f ∈ NN

such that, for each α < κ, f(n) = fα(n) for infinitely many n. Then {Un
f(n): n ∈ N} ∈ Ω(X). �

The method used in the following proof was introduced in [37]. Since this method is used frequently in
the present paper, we name it the projection method.

Theorem 2.2. Let C be a cov(M)-concentrated space. For each Lindelöf S1(Γ,Γ) space Y , X × Y satisfies
S1(Γ,O).

Proof. Let C be cov(M)-concentrated on some countable set D ⊆ C. Let Y be a Lindelöf S1(Γ,Γ) space.
Let K be a compact space containing C as a subspace. For each n, let Un ∈ Γ(C × Y ), where the elements
of Un are open in K × Y .

As D is countable, D×Y satisfies S1(Γ,O) (Lemma 2.1). Pick Un ∈ Un, n ∈ N, such that D×Y ⊆ U :=⋃
n Un.
The Hurewicz property Ufin(O,Γ) is preserved by products with compact spaces, moving to closed sub-

spaces, and continuous images [14]. Since Y satisfies Ufin(O,Γ) and K is compact, K×Y satisfies Ufin(O,Γ).
Thus, so does K × Y \ U . It follows that the projection H of (K × Y ) \ U on the first coordinate, satisfies
Ufin(O,Γ). Note that

(K \H) × Y ⊆ U.

The argument in the proof of [14, Theorem 5.7] generalizes to arbitrary (Tychonoff) spaces, to show that
for H,F disjoint subspaces of a space K with H Ufin(O,Γ), and F Fσ, there is a Gδ set G ⊆ K such that
G ⊇ F and H ∩G = ∅.

Let G be a Gδ subset of K such that D ⊆ G and H ∩G = ∅. As C is cov(M)-concentrated on D, C \G
is a countable increasing union of sets of cardinality < cov(M). By Lemma 2.1 and the fact that S1(Γ,O)
is preserved under countable unions (or, alternatively, as cov(M) has uncountable cofinality), (C \G) × Y

satisfies S1(Γ,O). Take Vn ∈ Un, n ∈ N, such that (C \G) × Y ⊆
⋃

n Vn. Then

C × Y ⊆
⋃
n∈N

(Un ∪ Vn).

We have picked two sets (instead of one) from each cover Un, but this is fine (e.g., [34, Appendix A]). �
The methods of [37] also imply the following, more general result. Since the proof is similar to that of

Theorem 3.3 in [37] and we are not going to use this result here, we omit the proof.
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Definition 2.3. Let κ be an infinite cardinal number. Let C0(κ) be the family of spaces of cardinality < κ.
For successor ordinals α + 1, let C ∈ Cα+1(κ) if:

(1) either there is a countable D ⊆ C with C \ U ∈ Cα(κ) for all open U ⊇ D;
(2) or C is a union of less than cf(κ) members of Cα(κ).

For limit ordinals α, let Cα(κ) =
⋃

β<α Cβ(κ).

By the Scheepers Diagram, add(N ) � add(S1(Γ,O)).

Theorem 2.4. The product of each member of Cadd(N )(cov(M)) with every Lindelöf S1(Γ,Γ) space satisfies
S1(Γ,O). �
Definition 2.5. Let P,Q be classes of spaces, each containing all one-element spaces and closed under
homeomorphic images. (P,Q)× is the class of all spaces X such that, for each Y in P , X × Y is in Q.

By Lemma 2.1, cov(M) � non((S1(Γ,Γ),S1(Γ,O))×). Theorem 2.4 holds, more generally, for
Cadd(S1(Γ,O))(non((Lindelöf S1(Γ,Γ),S1(Γ,O))×)).

Problem 2.6. Is non((Lindelöf S1(Γ,Γ),S1(Γ,O))×) = d?

3. Concentrated sets and the conjunction of Ufin(O,Γ) and S1(Γ,O)

In this section, we consider the conjunction of Ufin(O,Γ) and S1(Γ,O). This class is larger than Lindelöf
S1(Γ,Γ). The definition of b-scale set is given in Section 6. For the present purpose, it suffices to know
their following properties (cf. [34]): b-scale sets are subspaces of R, of cardinality b, that can be constructed
outright in ZFC. They are b-concentrated, and as such satisfy S1(Γ,O), and they satisfy Ufin(O,Γ). The
following results are known.

Theorem 3.1.

(1) Every b-scale set satisfies Ufin(O,Γ) and S1(Γ,O) [7] (cf. [34]).
(2) Consistently, no set of reals of cardinality b satisfies S1(Γ,Γ) [20].
(3) The Continuum Hypothesis implies that there is a b-scale set not satisfying S1(Γ,Γ) [24].

We will show that the conjunction of Ufin(O,Γ) and S1(Γ,O) can be expressed as a standard selec-
tive property. A countable cover U of a space X is in (Γ)ג [26] if for each (equivalently, some) bijective
enumeration U = {Un: n ∈ N}, there is an increasing h ∈ NN such that, for each x ∈ X,

x ∈
h(n+1)−1⋃
k=h(n)

Uk

for all but finitely many n. In [17] it is shown that Ufin(O,Γ) ∩ S1(O,O) = S1(Ω, .((Γ)ג

Proposition 3.2. Ufin(O,Γ) ∩ S1(Γ,O) = Lindelöf S1(Γ, .((Γ)ג

Proof. (⇒) Ufin(O,Γ) implies that every countable open cover is in (Γ)ג [17].
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(⇐) It suffices to prove that S1(Γ, ((Γ)ג implies Ufin(Γ,Γ). Assume that X satisfies S1(Γ, ,((Γ)ג and let
Un ∈ Γ for all n. We may assume that the covers Un get finer with n. Apply S1(Γ, ((Γ)ג to obtain Un ∈ Un,
n ∈ N, and an increasing h ∈ NN such that, for each x ∈ X,

x ∈
h(n+1)−1⋃
k=h(n)

Uk

for all but finitely many n. Since the covers Un get finer with n, there is for each n a finite set Fh(n) ⊆ Uh(n)
such that

h(n+1)−1⋃
k=h(n)

Uk ⊆
⋃

Fh(n).

For n not in the image of h chose Fn = ∅. �
Lemma 3.3. Let a space X be a union of less than cov(M) many S1(Γ, ((Γ)ג spaces. Then X satisfies
S1(Γ,O).

Proof. The proof is similar to that of Theorem 2.2 in [37]. We provide it, with the necessary changes, for
completeness.

Let κ < cov(M). Assume that, for each α < κ, Xα satisfies S1(Γ, ,((Γ)ג and X =
⋃

α<κ Xα. Let
Un ∈ Γ(X) for all n. We may assume that each Un is countable, and enumerate Un = {Un

m: m ∈ N}. For
each α, as Xα satisfies S1(Γ, ,((Γ)ג there are fα ∈ NN and an increasing hα ∈ NN such that, for each x ∈ Xα,

x ∈
hα(n+1)−1⋃
k=hα(n)

Uk
fα(k)

for all but finitely many n.
Since κ < cov(M) � d [12], there is an increasing h ∈ NN such that, for each α < κ, the set

Iα =
{
n:

[
hα(n), hα(n + 1)

)
⊆

[
h(n), h(n + 1)

)}

is infinite [12]. For each α < κ, define

gα ∈
∏
n∈Iα

N
[h(n),h(n+1))

by gα(n) = fα � [h(n), h(n + 1)) for all n ∈ Iα. As κ < cov(M), by Lemma 2.4.2(3) in [5], there is
g ∈

∏
n N

[h(n),h(n+1)) guessing all functions gα, that is, for each α < κ, g(n) = gα(n) for infinitely many
n ∈ Iα [12]. Define f ∈ NN by f(k) = g(n)(k), where n is the one with k ∈ [h(n), h(n + 1)). Then
{Un

f(n): n ∈ N} ∈ O(X).
Indeed, let x ∈ X. Pick α < κ with x ∈ Xα. Pick m such that, for all n > m, x ∈

⋃hα(n+1)−1
k=hα(n) Uk

fα(k).
Pick n ∈ Iα such that n > m and g(n) = gα(n). Then

x ∈
hα(n+1)−1⋃
k=hα(n)

Uk
fα(k) ⊆

h(n+1)−1⋃
k=h(n)

Uk
fα(k) =

h(n+1)−1⋃
k=h(n)

Uk
f(k). �

Corollary 3.4. add(M) � add(S1(Γ, (((Γ)ג � b.
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Proof. The second inequality follows from non(Ufin(O,Γ)) = b.
First inequality: add(M) = min{b, cov(M)}, and add(Ufin(O,Γ)) = b. Apply Lemma 3.3. �
We obtain the following generalization of Theorem 2.2.

Theorem 3.5. Let C be a cov(M)-concentrated space. For each space Y satisfying Ufin(O,Γ) and S1(Γ,O),
X × Y satisfies S1(Γ,O). �
Proof. Similar to the proof of Theorem 2.2, using Lemma 3.3. �

Similarly, we have the following.

Theorem 3.6. The product of each member of Cadd(N )(cov(M)) with every Lindelöf S1(Γ, ((Γ)ג space satisfies
S1(Γ,O). �

By Lemma 3.3, cov(M) � non((S1(Γ, .(×(S1(Γ,O),((Γ)ג Theorem 3.6 holds, more generally, for
Cadd(S1(Γ,O))(non((Lindelöf S1(Γ, .((×(S1(Γ,O),((Γ)ג Under mild hypotheses on a family A of covers, the
results proved here apply to S1(A ,O) for all A . The hypotheses on A , which can be extracted from the
proofs, are satisfied by all major types of covers in the context of selection principles.

Problem 3.7. Is add(S1(Γ, (((Γ)ג = b?

4. Concentrated sets and coherence of filters

For a ∈ [N]∞ and an increasing h ∈ NN, define

a/h =
{
n: a ∩

[
h(n), h(n + 1)

)

= ∅

}
.

For S ⊆ [N]∞, define S/h = {a/h: a ∈ S}.

4.1. Assuming NCF

NCF (near coherence of filters) is the assertion that, for each pair of nonprincipal ultrafilters U and V,
there is an increasing h ∈ NN such that U/h = V/h. The basic facts about NCF used here are available,
e.g., in [11,13].

Henceforth, we use the convenient notation

Un
�g(n) :=

g(n)⋃
m=1

Un
m.

We are indebted to Taras Banakh for proposing the following observation and its proof idea.

Theorem 4.1 (NCF). For a space X, the following assertions are equivalent:

(1) X satisfies Ufin(O,Ω).
(2) Whenever X ⊆ G ⊆ K, with K compact and G Gδ in K, there are κ < d and compact sets Kα ⊆ K,

α < κ, such that X ⊆
⋃

α<κ Kα ⊆ G.

Moreover, the implication (2) ⇒ (1) holds in ZFC, and in the implication (1) ⇒ (2), we may take κ = u.
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Proof. (1) ⇒ (2): Since X is Lindelöf, for each open set U containing X, there are open sets Um, m ∈ N,
such that X ⊆

⋃
m Um ⊆

⋃
m Um ⊆ U . Let G =

⋂
n Un with each Un open in K. For each n, let Un

m, m ∈ N,
be such that

X ⊆
⋃
m∈N

Un
m ⊆

⋃
m∈N

Un
m ⊆ Un,

and such that the covers {Un
m: m ∈ N} of X get finer with n. We may assume that none of these covers

contains a finite subcover of X.
Apply Ufin(O,Ω) to obtain an increasing f ∈ NN such that {Un

�f(n): n ∈ N} ∈ Ω(X). For each x ∈ X, let

fx(n) = min
{
m � fx(n− 1): x ∈ Un

m

}

for all n. The family of all sets {n: fx(n) � f(n)}, x ∈ X, is centered. Extend it to a nonprincipal ultrafilter
U on N. Then {fx: x ∈ X} is �U -bounded.

Let V be an ultrafilter with base of size u. By NCF, there is an increasing h ∈ NN such that U/h = V/h.
We claim that {fx: x ∈ X} is �V -bounded. Indeed, f is an increasing �U -bound for {fx: x ∈ X}. Define
g(n) = f(h(n+1)) for all n. For each n ∈ {k: fx(k) � f(k)}/h, fix k ∈ {k: fx(k) � f(k)}∩ [h(n), h(n+1)),
then

fx(n) � fx
(
h(n)

)
� fx(k) � f(k) � f

(
h(n + 1)

)
= g(n).

Let {Aα: α < u} be a base for V. For each α < u, let

Kα =
⋂

n∈Aα

Un
�g(n).

Then each Kα is compact, and X ⊆
⋃

α<u
Kα. NCF implies that u < d.

(2) ⇒ (1): For each n, let {Un
m: m ∈ N} be an open cover of X. Let K be a compact space containing X.

We may assume that each set Un
m is open in K. Let

G =
⋂
n∈N

⋃
m∈N

Un
m.

Then G is Gδ in K, and X ⊆ G. Let κ < d and Kα ⊆ K, α < κ, be compact sets with X ⊆
⋃

α<κ Kα ⊆ G.
For each α < κ, let fα ∈ NN be such that

Kα ⊆
⋂
n

Un
�fα(n).

Let g ∈ NN be a witness that {fα: α < κ} is not finitely dominating. Then {Un
�g(n): n ∈ N} is in Ω(X). �

In [8] it was proved that, if NCF holds, then b, g � add(Ufin(O,Ω)). We obtain an optimal version of this
result.

Corollary 4.2 (NCF). add(Ufin(O,Ω)) = d.

Proof. By Theorem 4.1. �
Theorem 4.3 (NCF). Let C be a d-concentrated space. For each Ufin(O,Ω) space Y , X×Y satisfies Sfin(O,O).
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Proof. We use the projection method.
Assume that there is a countable D ⊆ C with |C \ U | < d for all open U ⊇ D. Let Y be a Ufin(O,Ω)

space. Let K be a compact space containing C as a subspace. Let Un, n ∈ N, be covers of C × Y by sets
open in K × Y .

As D × Y satisfies Sfin(O,O), there are finite sets Fn ⊆ Un, n ∈ N, such that D × Y ⊆ U :=
⋃

n

⋃
Fn.

The projection S of (K × Y ) \ U on the first coordinate, satisfies Ufin(O,Ω). By Theorem 4.1, there are
compact sets Kα, α < u, such that

S ⊆
⋃
α<u

Kα ⊆ K \D.

As C is d-concentrated on D, |C ∩Kα| < d for all α < u. By NCF, u < d and d regular. It follows that

∣∣∣∣C ∩
⋃
α<u

Kα

∣∣∣∣ < d.

By Corollary 4.2, (C ∩S)× Y ⊆ (C ∩
⋃

α<u
Kα)× Y and the latter space satisfies Ufin(O,Ω). In particular,

there are finite F ′
n ⊆ Un, n ∈ N, such that (C ∩ S) × Y ⊆

⋃
n

⋃
F ′

n. Then

C × Y ⊆
⋃
n∈N

⋃(
Fn ∪ F ′

n

)
. �

4.2. Assuming u < g

The axiom u < g is stronger than NCF [18].

Theorem 4.4 (u < g). For a space X, the following assertions are equivalent:

(1) X satisfies Sfin(O,O).
(2) Whenever X ⊆ G ⊆ K, with K compact and G Gδ in K, there are compact sets Kα ⊆ K, α < u, such

that X ⊆
⋃

α<u
Kα ⊆ G.

Proof. (2) ⇒ (1): As u < g � d, Theorem 4.1 implies that X satisfies Ufin(O,Ω).
(1) ⇒ (2): u < g implies that Ufin(O,Ω) = Sfin(O,O) [38] (cf. [36]). Apply Theorem 4.1. �

Corollary 4.5 (u < g). add(Sfin(O,O)) = d.

Proof. By Corollary 4.2, using that u < g implies that Ufin(O,Ω) = Sfin(O,O). �
Definition 4.6. Let Kd be the smallest (with respect to inclusion) class of topological spaces with the
following properties:

(1) Every singleton space is in Kd.
(2) Kd is closed under unions of less than d elements.
(3) If there is a countable D ⊆ C with C \ U ∈ Kd for all open U ⊇ D, then C ∈ Kd.

Notice that every d-concentrated space is in Kd.

Theorem 4.7 (u < g). Every member of Kd is productively Sfin(O,O) and productively Sfin(Ω,Ω).
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Proof. It suffices to prove the first assertion. We use the projection method, and argue by induction on the
structure of Kd, as defined in Definition 4.6. Case (1) in this definition is trivial, and Case (2) follows from
Corollary 4.5. We treat Case (3).

Assume that there is a countable D ⊆ C with C \ U productively Sfin(O,O) for all open U ⊇ D. Let Y

be an Sfin(O,O) space. Let K be a compact space containing C as a subspace. Let Un, n ∈ N, be covers of
C × Y by sets open in K × Y .

As D × Y satisfies Sfin(O,O), there are finite sets Fn ⊆ Un, n ∈ N, such that D × Y ⊆ U :=
⋃

n

⋃
Fn.

The projection M of (K × Y ) \U on the first coordinate, satisfies Sfin(O,O). By Theorem 4.4, there are
compact sets Kα, α < u, such that

M ⊆
⋃
α<u

Kα ⊆ K \D.

Let α < u. As Kα ∩D = ∅, we have by the induction hypothesis that (C ∩Kα)× Y satisfies Sfin(O,O). By
Corollary 4.5,

⋃
α<u

(C ∩Kα) × Y ⊆ (C ∩M) × Y

satisfies Sfin(O,O). Take finite F ′
n ⊆ Un, n ∈ N, such that (C \G) × Y ⊆

⋃
n

⋃
F ′

n. Then

C × Y ⊆
⋃
n∈N

⋃(
Fn ∪ F ′

n

)
. �

A notorious open problem asks whether, consistently, Sfin(O,O) is closed under finite products. By
Theorem 4.7, a positive answer to the following problem would settle this problem in the affirmative. The
superperfect set model is the model obtained by an ℵ2 stage countable support iteration of superperfect trees
forcing over a model of GCH. In this model, u < g. The values of the combinatorial cardinal characteristics
of the continuum in this model [12] imply that there are no generalized (in any relevant sense) Luzin or
Sierpiński sets there (see Section 5 for the definitions). Consequently, in the superperfect set model, the
only known spaces satisfying Sfin(O,O) are those in Kd.

Problem 4.8. Is Kd = Sfin(O,O) in the superperfect set model?

We conclude this section with analogous results for Rothberger’s property S1(O,O). The hypothesis u < g

implies that every S1(O,O) space is Ufin(O,Γ) [38] (cf. [36]), and therefore that S1(Ω, ((Γ)ג = S1(O,O).

Definition 4.9. Let Ccov(M) be the smallest (with respect to inclusion) class of topological spaces with the
following properties:

(1) Every singleton space is in Ccov(M).
(2) Ccov(M) is closed under unions of less than cov(M) elements.
(3) If there is a countable D ⊆ C with C \ U ∈ Ccov(M) for all open U ⊇ D, then C ∈ Ccov(M).

Notice that every cov(M)-concentrated space is in Ccov(M). Using the above methods, we obtain the
following.

Theorem 4.10 (u < g). Every member of Ccov(M) is productively S1(O,O) and productively S1(Ω,Ω).

Proof. Assuming u < g, since S1(Ω, ((Γ)ג = S1(O,O), we have by Theorem 2.3 of [37] that
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add
(
S1(O,O)

)
= add

(
S1

(
Ω, (Γ)ג

))
= add(M) = non

(
S1

(
Ω, (Γ)ג

))
= non

(
S1(O,O)

)
= cov(M).

The rest follows from the projection method, as in the proof of Theorem 4.7. �
A notorious open problem, due to Bartoszyński and Judah [4], asks whether, consistently, add(S1(O,O))

or add(S1(B,B)) may be greater than add(N ). We do not know whether the hypothesis in the following
theorem is consistent (it is provable that cov(M) � u, though), but once such a consistency result is
established, we would obtain a solution of this problem.

Theorem 4.11 (ℵ1 < cov(M) � u < g).

ℵ1 = add(N ) < cf
(
cov(M)

)
= cov(M) = add

(
S1(O,O)

)
= add

(
S1(B,B)

)
.

Proof. It is known that u < g implies that add(N ) = ℵ1.5 By the arguments in the proof of Theorem 4.10
and the results used to prove it (all applying to S1(B,B) as well), we have that

add(M) = cov(M) = add
(
S1(O,O)

)
= add

(
S1(B,B)

)
.

Since add(M) is regular, so is cov(M). �
Problem 4.12. Is it consistent that add(N ) < cov(M) � u < g?

As in Problem 4.8, we do not know whether Ccov(M) = S1(O,O) in the superperfect set model, or whether
there is at all a model where Borel’s Conjecture fails (i.e., there are uncountable S1(O,O) sets of reals) and
S1(O,O) is closed under finite products.

5. Luzin and Sierpiński sets

Let κ be an uncountable cardinal. A set L ⊆ R is κ-Luzin if its intersection with every meager subset of R
has cardinality less than κ. Luzin sets are ℵ1-Luzin subsets of R. Every κ-Luzin set L is κ-concentrated on a
countable subset D ⊆ L (indeed, on every countable dense subset D ⊆ L). A set S ⊆ R is κ-Sierpiński if its
intersection with every Lebesgue null subset of R has cardinality less than κ. Sierpiński sets are ℵ1-Sierpiński
subsets of R.

The starting point of this section, that indeed also led to the earlier two sections, is a surprising result
of Babinkostova and Scheepers.6 Let L be a Luzin set and S be a Sierpiński set. It is known (e.g., [14,29])
that:

(1) L satisfies S1(O,O) (indeed, S1(B,B)), but not Ufin(O,Γ).
(2) S satisfies S1(Γ,Γ) (indeed, S1(BΓ,BΓ)), but not S1(O,O).

Assuming the Continuum Hypothesis, there is a Luzin set L that does not satisfy Ufin(O,Ω) [14]. It follows
that L× S does not satisfy any of Ufin(O,Ω) or S1(O,O).

Remark 5.1. It follows, in particular, that one cannot improve Theorem 2.2 by proving, e.g., that every
concentrated set of real numbers is productively S1(Γ,Γ).

5 Briefly, if add(N ) > ℵ1 then there is a rapid filter, but if u < d, in particular if u < g, then no ultrafilter can be rapid, since
every ultrafilter is coherent to one with base of cardinality u, which is smaller than d.
6 For the following details, it is recommended to consult the Scheepers Diagram.
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Theorem 5.2 (Babinkostova–Scheepers). (See [3].) For every Luzin set L and Sierpiński set S, L×S satisfies
Sfin(O,O).

As mentioned in the earlier sections, Babinkostova and Scheepers prove in [3] that it suffices to assume
that L is concentrated on a countable subset (or even less), and that S satisfies Ufin(O,Γ). Their full result
is generalized further in [37]. In the present section, we settle the question which selective properties are
provably satisfied by products of Luzin and Sierpiński sets. First, we use the results of the earlier section to
settle the problem in the case of open covers.

Theorem 5.3. For every Luzin set L and Sierpiński set S, L× S satisfies S1(Γ,O).

Proof. Recall that Luzin sets are concentrated on countable subsets, and Sierpiński sets satisfy S1(Γ,Γ).
Apply Theorem 3.5 (or Theorem 2.2). �

With, apparently, no exceptions thus far, all results about selective covering properties of Luzin and
Sierpiński sets, proved in the realm of open covers, were also provable for the corresponding Borel-covers
variant. Some examples are available in [29]. In light of this, the results in the remainder of this section
are surprising. They imply, in particular, that a product of a Luzin and a Sierpiński set may fail to satisfy
Sfin(B,B) (Menger’s property for Borel covers), and thus any of the Borel-cover versions of the properties
in the Scheepers diagram.

For convenience, in the remainder of this section we work in the Cantor space {0, 1}N instead of R. The
results can be transformed into R using the canonical map

{0, 1}N → [0, 1]

f �→
∑
n

f(n)
2n .

Definition 5.4. Define a reflexive binary relation R on {0, 1}N by setting xRy if

∃∞n, x � [n, 2n) = y � [n, 2n).

For y ∈ {0, 1}N, let

[y]R =
{
x ∈ {0, 1}N: xRy

}
.

For �x = 〈xn: n ∈ N〉 ∈ ({0, 1}N)N and y ∈ {0, 1}N, define

Match(�x, y) = χ{n: xnRy}.

Lemma 5.5. For x, y ∈ {0, 1}N:

(1) [y]R is a Lebesgue null, Gδ dense subset of {0, 1}N.
(2) If x =∗ y (equal mod finite), then [x]R = [y]R.
(3) Match : ({0, 1}N)N × {0, 1}N → {0, 1}N is a Borel map. �
Theorem 5.6. For all comeager X ⊆ ({0, 1}N)N and nonnull Y ⊆ {0, 1}N, Match[X × Y ] = {0, 1}N.
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Proof.

Lemma 5.7. Let Y ⊆ {0, 1}N be nonnull. For each �x ∈ ({0, 1}N)N, there is y ∈ Y such that �x ∈ ([y]Rc)N.

Proof. By Lemma 5.5, [xn]R is null for all n, and consequently so is
⋃

n[xn]R. Pick

y ∈ Y \
⋃
n

[xn]R.

As R is symmetric, �x ∈ ([y]Rc)N. �
Lemma 5.8. Let Y ⊆ {0, 1}N be nonnull. For each I ⊆ N,

⋃
y∈Y ([y]Rc)Ic×([y]R)I is nonmeager in ({0, 1}N)N.

Proof. Let �x ∈ ({0, 1}N)Ic . By Lemma 5.7, there is y ∈ Y such that �x ∈ ([y]Rc)Ic . By Lemma 5.5, ([y]R)I
is comeager in ({0, 1}N)I . Since

{�x} ×
(
[y]R

)I ⊆
⋃
y∈Y

(
[y]Rc)Ic × (

[y]R
)I
,

it follows that all vertical sections of
⋃

y∈Y ([y]Rc)Ic × ([y]R)I are comeager, in particular nonmeager. By
[15, Lemma 8.42], our set is nonmeager in ({0, 1}N)Ic × ({0, 1}N)I . �

Let z = χI ∈ {0, 1}N. By Lemma 5.8, there is

�x ∈ X ∩
( ⋃

y∈Y

(
[y]Rc)Ic × (

[y]R
)I)

.

Then Match(�x, y) = χI = z. �
Corollary 5.9. There is a Borel map f : {0, 1}N → {0, 1}N such that, for all comeager X ⊆ {0, 1}N and
nonnull Y ⊆ {0, 1}N, f [X × Y ] = {0, 1}N.

Proof. The canonical bijection {0, 1}N → ({0, 1}N)N is Borel, and preserves meager and null sets in both
directions. �

Sierpiński sets are special kinds of nonnull sets. In the Sacks model, there are Luzin and Sierpiński sets,
but they are all of cardinality ℵ1, whereas the continuum is ℵ2. Thus, consistently, there are no Luzin and
Sierpiński sets whose product can be mapped onto {0, 1}N. However, we have the following.

Corollary 5.10 (CH). For each nonnull set Y ⊆ {0, 1}N, there is a Luzin set L ⊆ {0, 1}N such that {0, 1}N
is a Borel image of L× Y .

Proof. Let f be the function defined in Corollary 5.9. Enumerate {0, 1}N = {rα: α < ℵ1}. Let {Mα: α < ℵ1}
be a cofinal family of meager subsets of {0, 1}N. For each α < ℵ1,

f

[(
{0, 1}N

∖ ⋃
β<α

Mα

)
× Y

]
= {0, 1}N.

Pick (xα, yα) ∈ ({0, 1}N \
⋃

Mα) × Y such that f(xα, yα) = rα. Finally, let L = {xα: α < ℵ1}. �
β<α
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add(M)-Luzin sets satisfy S1(B,B) (e.g., [29]).

Corollary 5.11 (add(M) = cof(M)). For each nonnull set Y ⊆ {0, 1}N, there is an add(M)-Luzin set
L ⊆ {0, 1}N such that L× Y does not satisfy Sfin(B,B).

Proof. Let f be the function defined in Corollary 5.9. Let κ = add(M) = cof(M). As add(M) � d � cof(M)
(in ZFC), there is a dominating set {dα: α < κ} ⊆ NN. Identify {0, 1}N with NN via a Borel bijection.

Let {Mα: α < κ} be a cofinal family of meager subsets of {0, 1}N. For each α < ℵ1,

f

[(
{0, 1}N

∖ ⋃
β<α

Mα

)
× Y

]
= N

N.

Pick (xα, yα) ∈ ({0, 1}N \
⋃

β<α Mα) × Y such that f(xα, yα) = dα. Finally, let L = {xα: α < ℵ1}.
As the Borel image f [L× Y ] contains D, it is dominating. Thus, L× Y does not satisfy Sfin(B,B). �

Theorem 5.12 (add(N ) = cof(N )). There are an add(N )-Luzin set L ⊆ {0, 1}N and an add(N )-Sierpiński
set S ⊆ {0, 1}N such that:

(1) All finite powers of L satisfy S1(BΩ,BΩ);
(2) All finite powers of S satisfy S1(BΓ,BΓ) and Sfin(BΩ,BΩ); but
(3) L× S does not satisfy Sfin(B,B).

Moreover, L does not satisfy Ufin(O,Γ) and S does not satisfy S1(O,O).

Proof. As add(N ) = cof(N ), there are an add(N )-Sierpiński set S as in (2) [32, Corollary 25], and by a dual
argument, an add(N )-Luzin set L such that all finite powers of L satisfy S1(B,B). (Here, we use Carlson’s
Theorem, that the union of less than add(N ) elements of S1(B,B) is in S1(B,B) [33].) It is pointed out in
[29, Theorem 18] that if all finite powers of X have property S1(B,B), then X has property S1(BΩ,BΩ).
This implies (1).

During the construction of L, one can also accommodate the restrictions provided in the proof of Corol-
lary 5.11, to make sure that f [L× S] contains a (Borel preimage in {0, 1}N of a) dominating subset of NN.
This gives (3).

The last assertion in the theorem is due to Sierpiński, cf. [14]. �
6. Scales and b-scales

In the earlier sections, we have discussed Luzin sets as special examples of concentrated sets. Another
standard method for constructing concentrated sets, initiated by Rothberger, is that of using scales. These
constructions require in general milder hypotheses than those used for the construction of Luzin and Sier-
piński sets, and in many cases can be carried out outright in ZFC.

For our purposes, it is convenient to identify the Cantor space {0, 1}N with P (N) = [N]∞∪[N]<∞, and use
the induced topology. For a ∈ [N]∞ and n ∈ N, a(n) denotes the n-th element in the increasing enumeration
of a. For a, b ∈ [N]∞, a �∗ b means that a(n) � b(n) for all but finitely many n. A scale is a cofinal
(dominating) set S = {sα: α < κ} in ([N]∞,�∗) such that sα �∗ sβ for α < β. Scales exist if and only
if b = d, and in this case, their cardinality is b. If we generalize “cofinal” to “unbounded”, we obtain the
definition of b-scale, an object constructible within ZFC. For each b-scale B, B ∪ [N]<∞ is b-concentrated
on its countable subset [N]<∞.

For brevity, the union of a scale with [N]<∞, viewed as a subset of the Cantor space P (N), will be called
scale set. b-scale sets are defined similarly.
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Corollary 6.1. Every product of a b-scale set and a cov(M)-concentrated space satisfies S1(Γ,O).

Proof. Every b-scale set satisfies Ufin(O,Γ) and, being d-concentrated, S1(Γ,O) as well [7]. Apply Proposi-
tion 3.2 and Theorem 3.5. �
Theorem 6.2. Let S ⊆ [N]∞ be a scale. The scale set S ∪ [N]<∞ is productively Sfin(O,O) and productively
Sfin(Ω,Ω).

Proof. Since Sfin(Ω,Ω) = Sfin(O,O)↑, it suffices to prove the first assertion. We use the projection method
(cf. Theorem 2.2).

Let Y be a space satisfying Sfin(O,O). Let Un, n ∈ N, be covers of (S ∪ [N]<∞) × Y by sets open in
P (N)×Y . As [N]<∞ is countable, [N]<∞×Y satisfies Sfin(O,O). Pick finite sets Fn ⊆ Un, n ∈ N, such that
[N]<∞ × Y ⊆ U :=

⋃
n

⋃
Fn.

Since Y satisfies Sfin(O,O) and P (N) is compact, the projection M of (P (N)×Y )\U on the first coordinate
satisfies Sfin(O,O). M ⊆ [N]∞, and satisfying Sfin(O,O), it is not dominating. Thus, |M ∩ S| < d = b. It
follows that (M ∩ S) × Y satisfies Sfin(O,O). Pick finite sets F ′

n ⊆ Un, n ∈ N, such that (M ∩ S) × Y ⊆⋃
n

⋃
F ′

n. Then

X × Y ⊆
⋃
n

⋃(
Fn ∪ F ′

n

)
. �

Theorem 6.2 is the last one in this paper proved by the projection method. In order to establish additional
productive properties of scale sets, we use the following method.

Lemma 6.3 (Productive Two Worlds Lemma). Let Y be a space, and for each n, let

{
Un
m: m ∈ N

}
∈ Ω

(
[N]<∞ × Y

)

with each Un
m clopen in P (N) × Y . There is a continuous map Ψ : Y → NN such that, for each n,

(x, y) ∈ Un
�Ψ(y)(n)

for all x ∈ [N]∞ such that |x| < n or Ψ(y)(n) � x(n).

Proof. Let y ∈ Y . Fix n. Let mn(1) = an(1) = 1. By induction on k, let mn(k + 1) be minimal with

P
({

1, . . . , an(k) − 1
})

× {y} ⊆ Un
mn(k+1),

and let an(k + 1) be minimal such that

(x, y) ∈ Un
mn(k+1)

for all x ∈ P (N) with x ∩ {an(k), . . . , an(k + 1) − 1} = ∅.
Define

Ψ(y)(n) = max
{
an(n + 1),mn(n + 1)

}

for all n. Ψ is continuous. Fix n, and let x ∈ [N]∞ with Ψ(y)(n) � x(n). As an(n + 1) � Ψ(y)(n) � x(n),
there is k < n + 1 with x ∩ {an(k), . . . , an(k + 1) − 1} = ∅. Then (x, y) ∈ Un . As
mn(k+1)
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mn(k + 1) � mn(n + 1) � Ψ(y)(n),

Un
mn(k+1) ⊆ Un

�Ψ(y)(n). �
Lemma 6.4. Let X be a space and A ∈ {Γ,Ω,O}. If there is a space Y such that X × Y is Lindelöf but not
Ufin(O,A ), then there is such a subspace Y of the Cantor space.

Proof. Let Un, n ∈ N, be open covers of X × Y witnessing the failure of Ufin(O,A ). As X × Y is Lindelöf,
we may assume that each Un has the form {Un

m × V n
m: m ∈ N}. Define set-valued maps Φ, Ψ from X,Y ,

respectively, into the Cantor space P (N× N) by

A ∈ Φ(x) ⇐⇒
{
(n,m): x ∈ Un

m

}
⊆ A,

A ∈ Ψ(y) ⇐⇒
{
(n,m): y ∈ V n

m

}
⊆ A

for all x ∈ X, y ∈ Y . By [38, Lemma 2], these maps are compact-valued, upper semicontinuous. Thus,

Ψ [Y ] :=
⋃
y∈Y

Ψ(y) ⊆ P (N× N)

satisfies Ufin(O,A ), and X × Ψ [Y ] is Lindelöf, being a compact-valued, upper semicontinuous image of the
Lindelöf space X × Y .

We claim that X × Ψ [Y ] does not satisfy Ufin(O,A ). Assume otherwise. Then Φ[X] × Ψ [Y ] satisfies
Ufin(O,A ), being a compact-valued, upper semicontinuous image of X × Ψ [Y ]. Define

Ξ : P (N× N) × P (N× N) → P (N× N)

(A,B) �→ A ∩B.

Then Ξ is continuous. For each n, let Wn := {Wn
m: m ∈ N}, where

Wn
m =

{
A ⊆ N× N: (n,m) ∈ A

}
.

For each n, Wn is an open cover of Ξ(Φ[X] × Ψ [Y ]). But {Wn
�f(n): n ∈ N} is not in A (Ξ(Φ[X] × Ψ [Y ]))

for any f ∈ NN, for otherwise, {
⋃

m�f(n) U
n
m × V n

m: n ∈ N} would be in A (X × Y ). �
An open cover U ∈ Ωgp(X) if there are h ∈ NN and an enumeration U = {Un: n ∈ N} such that, for each

finite F ⊆ X and each n, F ⊆ Uk for some h(n) � k � h(n + 1). Ufin(O,Γ)↑ = Sfin(Ω,Ωgp) [17].
Bartoszyński and Shelah [6] proved that every b-scale set satisfies Ufin(O,Γ). Then, Bartoszyński and

Tsaban [7] proved that all finite powers of a b-scale set satisfy Ufin(O,Γ). Later, Tsaban and Zdomskyy [35]
proved that all finite products of b-scale sets satisfy Ufin(O,Γ). The following theorem is much stronger.

Theorem 6.5. Every b-scale set (in particular, every scale set) is:

(1) Productively hereditarily Lindelöf Ufin(O,Γ); and
(2) Productively hereditarily Lindelöf Sfin(Ω,Ωgp).

Proof. It suffices to prove the first assertion.
Let B = {bα: α < b} be a b-scale. Let Y be a hereditarily Lindelöf space satisfying Ufin(O,Γ). Then

(B ∪ [N]∞) × Y is (hereditarily) Lindelöf. By Lemma 6.4, we may assume that Y ⊆ {0, 1}N.
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Let Un ∈ Ω((B ∪ [N]<∞) × Y ) for all n. As X × Y is a subspace of the Cantor space, we may assume
that each element of each Un is clopen, and the Productive Two Worlds Lemma applies. Let Ψ be as in
that lemma. As Y satisfies Ufin(O,Γ), Ψ [Y ] is bounded by some g ∈ NN. Take α < b such that the set
I = {n: g(n) � bα(n)} is infinite. For each β � α and each y ∈ Y ,

Ψ(y)(n) � g(n) � bα(n) � bβ(n),

and therefore (bβ , y) ∈ Un
�g(n), for all but finitely many n ∈ I. We also have that (x, y) ∈ Un

�g(n), for all
x ∈ [N]<∞, y ∈ Y and all but finitely many n.

As add(Ufin(O,Γ)) = b, {bβ : β < α} × Y satisfies Ufin(O,Γ), and thus there is h ∈ NN such that
{Un

�h(n): n ∈ N} ∈ Γ({bβ : β < α} × Y ). For n ∈ I, let

Fn =
{
Un
m: m � max

{
g(n), h(n)

}}
.

For n /∈ I, let Fn = ∅. Then {
⋃
Fn: n ∈ N} ∈ Γ((B ∪ [N]<∞) × Y ). �

A set D ⊆ NN is finitely dominating if its closure under pointwise maxima of finite subsets, maxfin(D),
is dominating. Let cov(Dfin) be the minimal κ such that NN (equivalently, a dominating subset of NN) can
be decomposed into κ many sets, none of which finitely dominating. Then

max{b, g} � cov(Dfin) � d,

and strict inequalities are consistent [19].

Lemma 6.6. Every space of cardinality less than cov(Dfin) is productively Ufin(O,Ω) for countable covers.

Proof. Assume that |X| < cov(Dfin) and Y satisfies Ufin(O,Ω) for countable covers. Using the terminology
of the forthcoming Section 7 and Theorem 7.4, let Ψ : X×Y → NN be upper continuous. It suffices to prove
that Ψ [X × Y ] is not finitely dominating. For each finite F ⊆ X, the map

ΨF : Y → N
N

y �→ max
{
Ψ(x, y): x ∈ F

}

is upper continuous. Thus, ΨF [Y ] is not finitely dominating. Each finite subset of X×Y is contained in one
of the form F1 × F2, and

maxΨ [F1 × F2] = maxΨF1 [F2].

Thus,

⋃
F∈[X]<∞

maxfinΨF [Y ]

is cofinal in maxfinΨ [X×Y ]. This is a directed union (every finite sub-union is contained in a single member)
of less than cov(Dfin) many sets that are not finitely dominating. Thus, it is not finitely dominating. �
Theorem 6.7. For each scale S ⊆ [N]∞, the scale set S ∪ [N]<∞ is productively hereditarily Lindelöf
Ufin(O,Ω).
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Proof. Let S = {sα: α < b} be a scale, and let Y be a space satisfying Ufin(O,Ω). By Lemma 6.4, we may
assume that Y is a subspace of the Cantor space. Let

Un =
{
Un
m: m ∈ N

}
∈ Ω

((
S ∪ [N]<∞)

× Y
)

for all n. We may assume that every Un
m, n,m ∈ N, is clopen. Let Ψ be as in Lemma 6.3. For α < γ < b, let

Xα,γ = {sβ : β < α or γ � β} ∪ [N]<∞.

Lemma 6.8. For each α < b, there are γ < b and g ∈ NN such that

{
Un

�g(n): n ∈ N
}
∈ Ω(Xα,γ × Y ).

Proof. Fix p /∈ {sβ : β < α}, and consider D = {sβ : β < α}∪{p} as a discrete space. By Lemma 6.6, D×Y

satisfies Ufin(O,Ω). Define Φ : D × Y → NN by

Φ(p, y) = Ψ(y);

Φ(sβ , y)(n) = min
{
m: (sβ , y) ∈ Un

m

}
(n ∈ N).

As Φ is continuous, Φ[D × Y ] is not finitely dominating. Let g ∈ NN be a witness for that. Let γ be such
that g �∗ sγ . We claim that γ and g are as required. Let F ⊆ Xα,γ and G ⊆ Y be finite sets. Decompose
F as

F =
(
F ∩Xα,b \ [N]<∞)

∪
(
F ∩ [N]<∞)

∪
(
F ∩X0,γ \ [N]<∞)

.

The set

I :=
{
n: maxΦ

[((
F ∩Xα,b \ [N]<∞)

∪ {p}
)
×G

]
(n) � g(n)

}

is infinite.
For each sβ ∈ F ∩Xα,b \ [N]<∞ and each y ∈ Y ,

Φ(sβ , y)(n) � g(n)

for all n ∈ I. Thus, (F ∩Xα,b \ [N]<∞) ×G ⊆ Un
�g(n) for all n ∈ I.

For each x ∈ [N]<∞ and each y ∈ G,

Ψ(y)(n) = Φ(p, y)(n) � g(n) and |x| < n

for all but finitely many n ∈ I. Thus, (F ∩ [N]<∞) ×G ⊆ Un
�g(n) for all but finitely many n ∈ I.

Finally, for each β � γ and each y ∈ G,

Ψ(y)(n) = Φ(p, y)(n) � g(n) � sβ(n)

for all but finitely many n ∈ I. Thus, (F ∩X0,γ \ [N]<∞) ×G ⊆ Un
�g(n) for all but finitely many n ∈ I.

It follows that F ×G ⊆ Un
�g(n) for all but finitely many n ∈ I. �

By Lemma 6.8 applied to α = 0, there are γ1 < b and g1 ∈ NN such that

{
Un

�g (n): n ∈ N
}
∈ Ω(X0,γ1 × Y ).
1



1052 A.W. Miller et al. / Annals of Pure and Applied Logic 165 (2014) 1034–1057
By Lemma 6.8 applied to α = γ1, there are γ2 < b and g2 ∈ NN such that

{
Un

�g2(n): n ∈ N
}
∈ Ω(Xγ1,γ2 × Y ).

By Lemma 6.8 applied to α = γ2, there are γ3 < b and g3 ∈ NN such that

{
Un

�g3(n): n ∈ N
}
∈ Ω(Xγ2,γ3 × Y ).

Continue, in this manner, to define γn and gn for all n. Let γ = supn γn, and g be a �∗-bound of {gn: n ∈ N}.
Then

{
Un

�g(n): n ∈ N
}
∈ Ω

((
S ∪ [N]<∞)

× Y
)
.

Indeed, let F ×G be a finite subset of (S ∪ [N]<∞) × Y . Let H = {β < b: sβ ∈ F}. As H is finite, there is
k such that H ∩ γ ⊆ γk. Then F ⊆ Xγk,γk+1 , and thus there are infinitely many n such that

F ×G ⊆ Un
�gk(n) ⊆ Un

�g(n). �
We do not know whether the hypothesis in the following corollary is necessary.

Corollary 6.9 (b � cov(M)). Every b-scale set is:

(1) Productively hereditarily Lindelöf S1(Ω, ;((Γ)ג
(2) Productively hereditarily Lindelöf S1(Ω,Ωgp);
(3) Productively hereditarily Lindelöf S1(Γ, ;((Γ)ג and
(4) Productively hereditarily Lindelöf S1(Γ, .↑((Γ)ג

Proof. The second assertion follows from the first, since S1(Ω,Ωgp) = S1(Ω, ↑((Γ)ג [17]. Similarly, the fourth
assertion follows from the third.

(1) Let X be a b-scale set, and let Y be hereditarily Lindelöf S1(Ω, .((Γ)ג As X is b-concentrated, it is
in particular cov(M)-concentrated. By [37, Theorem 3.1(2)], X × Y satisfies S1(O,O). By Theorem 6.5,
X × Y satisfies Ufin(O,Γ). To conclude, recall that S1(Ω, ((Γ)ג = Ufin(O,Γ) ∩ S1(O,O) [17].

(3) Similar, using Proposition 3.2, Theorem 3.5 and Theorem 6.5. �
Remark 6.10. The only role of our restriction to hereditarily Lindelöf in the results of this section is to
guarantee that the product with a scale set remains Lindelöf.

7. Combinatorial characterizations of Ufin(O,Γ), Ufin(O,Ω), and Sfin(O,O)

We provide here characterizations of Ufin(O,Γ), Ufin(O,Ω), and Sfin(O,O) for arbitrary topological spaces.
These characterizations will be used in the following section. In this section only, the spaces are not as-
sumed to be Tychonoff, so that the characterizations may find additional future applications in more general
contexts. Replacing upper continuous by continuous and restricting attention to separable, metrizable,
zero-dimensional spaces, the first two items in each of our characterizations become the celebrated charac-
terizations of Hurewicz–Recław [22] (cf. [30]).

Definition 7.1. Let X be a topological space. For each m and n, consider the basic open set

On
m =

{
f ∈ N

N: f(n) � m
}

= π−1
n

[
{1, . . . ,m}

]
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in NN, where πn : NN → N is the projection on the n-th coordinate. A function Ψ : X → NN is upper
continuous if, for each n, the set

Ψ−1[On
m

]
=

{
x ∈ X: Ψ(x)(n) � m

}

is open in X.
A set-valued map Ψ from X to NN is principal if there is a function ψ : X → NN such that

Ψ(x) =
{
f ∈ N

N: ∀n, f(n) � ψ(x)(n)
}
.

We use cusco as abbreviation for compact-valued upper semicontinuous.

Lemma 7.2. Let X be a topological space.

(1) Every cusco map from X to NN is dominated by a principal one.
(2) A function ψ : X → NN is upper continuous if and only if the principal set-valued map Ψ from X to

NN determined by ψ is cusco. �
The equivalence of (1) and (4) in the following theorem is established in [38, Theorem 8]. Our proof is,

perhaps, more transparent.

Theorem 7.3. Let X be a topological space. The following assertions are equivalent:

(1) X satisfies Ufin(O,Γ);
(2) X is Lindelöf, and every upper continuous image of X in NN is bounded;
(3) X is Lindelöf, and every principal cusco image of X in NN is bounded;
(4) X is Lindelöf, and every cusco image of X in NN is bounded.

Proof. The equivalence of (2), (3), (4) follows from Lemma 7.2.
(1) ⇒ (2): Let Ψ : X → NN be upper continuous. For each n and each m, let

Un
m =

{
x ∈ X: Ψ(x)(n) � m

}
.

The sets Un
m increase with m, and {Un

m: m ∈ N} is an open cover of X. We may assume that Un
m 
= X for

all m. (Otherwise, treat the indices m with Un
m = X.)

Applying Ufin(O,Γ), there are m1,m2, . . . such that {Un
mn

: n ∈ N} ∈ Γ(X). For each x ∈ X, x ∈ Un
mn

,
and thus Ψ(x)(n) � mn, for all but finitely many n. In other words, Ψ [X] is bounded by the function
g(n) = mn.

(2) ⇒ (1): For each n, let Un = {Un
m: m ∈ N} be an open cover of X. We may assume that the sets Un

m

increase with m. For each x ∈ X, define

Ψ(x)(n) = min
{
m: x ∈ Un

m

}

for all n. Then Ψ is upper continuous. Indeed, for each n,

Ψ−1[{1, . . . ,m}
]

= Ψ−1[{1}] ∪ · · · ∪ Ψ−1[{m}
]

= Un
1 ∪ · · · ∪ Un

m = Un
m

is open in X.
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Let g ∈ NN be a bound of Ψ [X]. Then {Un
g(n): n ∈ N} ∈ Γ(X). Indeed, for each x ∈ X, Ψ(x)(n) � g(n),

and thus x ∈ Un
g(n), for all but finitely many n. �

Similarly, we have the following.

Theorem 7.4. Let X be a topological space. The following assertions are equivalent:

(1) X satisfies Ufin(O,Ω);
(2) X is Lindelöf, and no upper continuous image of X in NN is finitely dominating;
(3) X is Lindelöf, and no principal cusco image of X in NN is finitely dominating;
(4) X is Lindelöf, and no cusco image of X in NN is finitely dominating. �
Theorem 7.5. Let X be a topological space. The following assertions are equivalent:

(1) X satisfies Sfin(O,O);
(2) X is Lindelöf, and no upper continuous image of X in NN is dominating;
(3) X is Lindelöf, and NN is not a principal cusco image of X;
(4) X is Lindelöf, and NN is not a principal cusco image of X. �

While cusco images preserve the properties mentioned above, upper continuous images need not. However,
upper continuous images are combinatorially easier to handle.

8. Productively Lindelöf spaces

We conclude this paper with the following theorems concerning the property of being productively Lin-
delöf. A topological space has countable type if each compact set in X is contained in one of countable outer
character. We will use the following lemmata.

Lemma 8.1 (Alas–Aurichi–Junqueira–Tall). (See [1].) Let X be a Lindelöf space of countable type. If there is
an uncountable set A ⊆ X such that A∩K is countable for every compact K ⊆ X, then X is not productively
Lindelöf.

Improving upon earlier results by several authors, Aurichi and Tall [2] proved that, if d = ℵ1, then all
productively Lindelöf countable type spaces satisfy Ufin(O,Γ). The following theorem both strengthens and
generalizes this result.

Theorem 8.2 (d = ℵ1). Every productively Lindelöf metric (or just countable type) space is:

(1) Productively Ufin(O,Γ);
(2) Productively Sfin(Ω,Ωgp);
(3) Productively Sfin(O,O);
(4) Productively Sfin(Ω,Ω); and
(5) Productively Ufin(O,Ω).

Proof. (2) follows from (1), and (4) from (3).
Let X be a productively Lindelöf space and let {sα: α < ℵ1} ⊆ NN be a scale.
(1) Assume that Y is Ufin(O,Γ) and X × Y is not. By Theorem 7.3, there is an upper continuous

Ψ : X × Y → NN such that Ψ [X × Y ] is unbounded. For each α < ℵ1, pick (xα, yα) ∈ X × Y such that
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sα(n) � Ψ(xα, yα)(n)

for infinitely many n. Let A = {xα: α < ℵ1}. Let K ⊆ X be compact. Then K ×Y satisfies Ufin(O,Γ), and
thus Ψ [K × Y ] is bounded by some g ∈ NN. Let α < ℵ1 be such that g <∗ sα. For each β � α,

g(n) < sα(n) � sβ(n) � Ψ(xβ , yβ)(n),

for infinitely many n, and therefore (xβ , yβ) /∈ K × Y . In particular, A∩K is countable. By Lemma 8.1, X
is not productively Lindelöf.

(3) Similar to (1): Assume that Y is Sfin(O,O) and X × Y is not. By Theorem 7.5, there is an upper
continuous Ψ : X × Y → NN such that Ψ [X × Y ] is dominating. For each α < ℵ1, pick (xα, yα) ∈ X × Y

with

sα �∗ Ψ(xα, yα).

Let A = {xα: α < ℵ1}. Let K ⊆ X be compact. As K×Y satisfies Sfin(O,O), Ψ [K×Y ] is not dominating.
Let g ∈ NN be a witness for that. Let α < ℵ1 be such that g <∗ sα. For each β � α,

g <∗ sα �∗ sβ �∗ Ψ(xβ , yβ),

and therefore (xβ , yβ) /∈ K×Y . Thus, A∩K is countable, and by Lemma 8.1, X is not productively Lindelöf.
(5) Assume that Y is Ufin(O,Ω) and X × Y is not. By Theorem 7.4, there is an upper continuous

Ψ :X×Y → NN such that Ψ [X×Y ] is finitely dominating. Then there is k such that Ψ [X×Y ] is k-dominating,
that is, for each f ∈ NN there are (x1, y1), . . . , (xk, yk) ∈ X×Y such that f �∗ max{Ψ(x1, y1), . . . , Ψ(xk, yk)}.
For each α < ℵ1, pick (xα

1 , y
α
1 ), . . . , (xα

k , y
α
k ) ∈ X × Y with

sα �∗ max
{
Ψ
(
xα

1 , y
α
1
)
, . . . , Ψ

(
xα
k , y

α
k

)}
.

Define an upper continuous map

Φ : Xk × Y → N
N

(x1, . . . , xk, y) �→ max
{
Ψ(x1, y), . . . , Ψ(xk, y)

}
.

Let A = {(xα
1 , . . . , x

α
k ): α < ℵ1} ⊆ Xk. Let K ⊆ Xk be compact. As K×Y satisfies Ufin(O,Ω), Φ[K×Y ]

is not finitely dominating. Let g ∈ NN be a witness for that. Let α < ℵ1 be such that g <∗ sα. For each
β � α,

g <∗ sα �∗ sβ �∗ max
{
Ψ
(
xβ

1 , y
β
1
)
, . . . , Ψ

(
xβ
k , y

β
k

)}
�∗ max

{
Φ
(
xβ

1 , . . . , x
β
k , y

β
1
)
, . . . , Φ

(
xβ

1 , . . . , x
β
k , y

β
k

)}
,

and therefore (xβ
1 , . . . , x

β
k) /∈ K. Thus, A ∩ K is countable, and by Lemma 8.1, Xk is not productively

Lindelöf. It follows that X is not productively Lindelöf. �
Say that a topological space X is b-scalefully Sfin(O,O) if for each upper continuous map Ψ : X → NN

and each b-scale B = {bα: α < b}, there is α < b such that for each x ∈ X, Ψ(x)(n) � bα(n) for infinitely
many n. Every Ufin(O,Γ) space is b-scalefully Sfin(O,O) and every b-scalefully Sfin(O,O) space is Sfin(O,O).

If every b-scale is dominating (this holds, for example, in the Laver model) then every Sfin(O,O) space
is b-scalefully Sfin(O,O). One can prove, in ZFC, that if every b-scale is dominating, then ℵ1 < b = d. On
the other hand, if b < d then every b-scale is an example of an Sfin(O,O) space that is not b-scalefully
Sfin(O,O).
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Theorem 8.3 (b = ℵ1). Every productively Lindelöf metric (or just countable type) space is productively
b-scalefully Sfin(O,O).

Proof. Let Y be a b-scalefully Sfin(O,O) space. Suppose, contrary to our claim, that X×Y is not b-scalefully
Sfin(O,O). Then there are an upper continuous map Ψ : X × Y → NN and a b-scale B = {bα: α < b} such
that, for each α < ℵ1, there is (xα, yα) ∈ X × Y such that bα �∗ Ψ(xα, yα).

Let A = {xα: α < ℵ1}. By Lemma 8.1 it is enough to prove that A ∩ K is countable for all compact
K ⊆ X. Indeed, it is easy to see that Ψ witnesses that, for every B such that |B ∩ A| = ℵ1, B × Y

is not b-scalefully Sfin(O,O). It suffices to observe that every compact space is productively b-scalefully
Sfin(O,O). �

Alas, Aurichi, Junqueira, and Tall proved in [1] that, if b = ℵ1, then every productively Lindelöf countable
type space satisfies Sfin(O,O). We obtain a stronger result.

Corollary 8.4 (b = ℵ1). Let X be a productively Lindelöf metric (or just countable type) space. For each
Ufin(O,Γ) space Y , the product space X × Y satisfies Sfin(O,O). �

It is known [23] that, if there is a Michael space, then all productively Lindelöf spaces satisfy Sfin(O,O).

Problem 8.5. Assume that there is a Michael space. Is every productively Lindelöf space productively
Sfin(O,O)?
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