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SQUARES OF MENGER-BOUNDED GROUPS

MICHA�L MACHURA, SAHARON SHELAH, AND BOAZ TSABAN

Abstract. Using a portion of the Continuum Hypothesis, we prove that there
is a Menger-bounded (also called o-bounded) subgroup of the Baer-Specker
group ZN, whose square is not Menger-bounded. This settles a major open
problem concerning boundedness notions for groups and implies that Menger-
bounded groups need not be Scheepers-bounded. This also answers some ques-
tions of Banakh, Nickolas, and Sanchis.

1. Introduction

Assume that (G, ·) is a topological group. For A,B ⊆ G, A · B stands for
{a · b : a ∈ A, b ∈ B} and a ·B stands for {a · b : b ∈ B}. The following definitions
are due, independently, to Okunev and Kočinac.

Definition 1. Assume that (G, ·) is a topological group. G is:

(1) Menger-bounded if for each sequence {Un}n∈N of neighborhoods of the unit,
there exist finite sets Fn ⊆ G, n ∈ N, such that G =

⋃
n Fn · Un.

(2) Scheepers-bounded if for each sequence {Un}n∈N of neighborhoods of the
unit, there exist finite sets Fn ⊆ G, n ∈ N, such that for each finite set
F ⊆ G, there is n such that F ⊆ Fn · Un.

(3) Hurewicz-bounded if for each sequence {Un}n∈N of neighborhoods of the
unit, there exist finite sets Fn ⊆ G, n ∈ N, such that for each g ∈ G,
g ∈ Fn · Un for all but finitely many n.

(4) Rothberger-bounded if for each sequence {Un}n∈N of neighborhoods of the
unit, there exist elements an ∈ G, n ∈ N, such that G =

⋃
n an · Un.

Several instances of these properties were studied in, e.g., [28, 10, 11, 18, 5, 30]. A
study from a more general point of view was initiated in [15, 2, 1]. These properties
are obtained from the following general topological properties by restricting atten-
tion to open covers of the form {a · U : a ∈ G}, where U is an open neighborhood
of the unit.

Definition 2. Assume that X is a topological space. X has the

(1) Menger property [20] if for each sequence {Un}n∈N of open covers of X,
there exist finite sets Fn ⊆ Un, n ∈ N, such that

⋃
n∈N

Fn is a cover of X.
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(2) Scheepers property [25] if for each sequence {Un}n∈N of open covers of X,
there exist finite sets Fn ⊆ Un, n ∈ N, such that for each finite set F ⊆ X,
there is n such that F ⊆

⋃
U∈Fn

U .
(3) Hurewicz property [12, 13] if for each sequence {Un}n∈N of open covers of

X, there exist finite sets Fn ⊆ Un, n ∈ N, such that for each element x ∈ X,
x ∈

⋃
U∈Fn

U for all but finitely many n.
(4) Rothberger property [24] if for each sequence {Un}n∈N of open covers of X,

there exist elements Un ∈ Un, n ∈ N, such that X =
⋃

n∈N
Un.

Except for the second, all of these properties are classical. They share the same
structure and can be defined in a unified manner [25, 14]. These properties were
analyzed in many papers and form an active area of mathematical research; see
[26, 16, 29, 6] and the references therein.

The relations between the mentioned group theoretic and general topological
properties is thoroughly investigated in [19, 32]. Here, we consider only the group
theoretic properties. Clearly, the group theoretic properties are related as follows:

Hurewicz-bounded �� Scheepers-bounded �� Menger-bounded

Rothberger-bounded

��

Babinkostova [1] proved that a metrizable group G is Hurewicz-bounded if, and
only if, G is a subgroup of a σ-compact group (see [19]). Neither the leftmost hori-
zontal implication nor the vertical implication can be inverted—even when restrict-
ing our attention to metrizable groups. The question as to whether the remaining
implication can be inverted remained thus far open [5, 2, 6, 19].

Problem 3. Is every Menger-bounded group Scheepers-bounded?

The notions of Menger-bounded and Scheepers-bounded groups are related in
the following elegant manner. For each k, let Gk be the direct product of k copies
of G.

Theorem 4 (Babinkostova-Kočinac-Scheepers [2]). G is Scheepers-bounded if, and
only if, Gk is Menger-bounded for all k.

In light of Theorem 4, Problem 3 asks whether there could be a (metrizable)
group G such that for some k, Gk is Menger-bounded but Gk+1 is not. The proof
of Theorem 4 in [2] actually shows that the following holds for each natural number
k. Since this is used in the sequel, we give a proof.

Lemma 5. Gk is Menger-bounded if, and only if, for each sequence {Un}n∈N of
neighborhoods of the unit of G there exist finite sets Fn ⊆ G, n ∈ N, such that for
each F ⊆ G with |F | = k there is n such that F ⊆ Fn · Un.

Proof. (⇒) Let Un, n ∈ N, be neighborhoods of the unit of G. Then U k
n , n ∈ N, are

neighborhoods of the unit of Gk. Take finite Gn ⊆ Gk such that Gk =
⋃

n Gn ·U k
n .

Adding elements if necessary, we may assume that each Gn has the form F k
n for

some finite Fn ⊆ G. The sets Fn are as required: Given g1, . . . , gk ∈ G, there is n
such that (g1, . . . , gk) ∈ F k

n · U k
n = (Fn · Un)

k, and therefore g1, . . . , gk ∈ Fn · Un.
(⇐) It suffices to consider basic neighborhoods of the unit of Gk. Let Vn =

Un,1 × · · · × Un,k, n ∈ N, be such that each Un,i is a neighborhood of the unit of
G. For each n, Un = Un,1 ∩ · · · ∩ Un,k is a neighborhood of the unit of G. Take
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finite Fn ⊆ G, n ∈ N, such that for each F ⊆ G with |F | = k, there is n such
that F ⊆ Fn · Vn. Given (g1, . . . , gk) ∈ Gk, take F = {g1, . . . , gk}. If needed,
add elements to F to have |F | = k. Then, whenever F ⊆ Fn · Un, we have that
(g1, . . . , gk) ∈ F k ⊆ (Fn · Un)

k ⊆ F k
n · Vn. Thus, the finite sets F k

n , n ∈ N, are as
required for the Menger-boundedness of Gk. �

We give a negative answer to Problem 3 by showing that, assuming the Contin-
uum Hypothesis or just a portion of it, there is for each k a metrizable group G
such that Gk is Menger-bounded but Gk+1 is not.

Some special hypothesis is necessary in order to prove such a result: Banakh
and Zdomskyy [7, 6], and later (independently) Mildenberger and Shelah [23],
proved that, consistently, every topological group with Menger-bounded square
is Scheepers-bounded.

Question 1 of Banakh, Nickolas, and Sanchis [5] asks whether each Menger-
bounded subgroup of CN (with coordinate-wise addition) is mixable or oF -bounded
for some filter F . As it is proved there that mixable Menger-bounded groups are
Scheepers bounded, and the same holds for groups which are oF -bounded for some
filter F , we obtain a negative answer to both questions: The groups we construct
are, in particular, subgroups of CN.

The problem of whether, consistently, every Menger-bounded group is Scheepers-
bounded is yet to be addressed. The answer to this problem is positive if, and only
if, the answer to the following problem is positive.

Problem 6. Is it consistent that for each Menger-bounded group G, G2 is Menger-
bounded?

There seems to be no straightforward negative answer to Problem 6. If G is
abelian and Menger-bounded but G2 is not, then G cannot be analytic, and it
cannot be a free topological group over a Tychonoff space, either [6, 33].

2. Specializing the question for the Baer-Specker group

The Baer-Specker group is the abelian group (ZN,+) where + denotes coordinate-
wise addition. Subgroups of the Baer-Specker group form a rich source of examples
of groups with various boundedness properties [3, 27, 9, 19, 32]. The advantage of
working in ZN is that the boundedness properties there can be stated in a purely
combinatorial manner.

We use mainly self-evident notation. The quantifiers (∃∞n) and (∀∞n) stand
for “there exist infinitely many n” and “for all but finitely many n”, respectively.
The canonical basis for the topology of ZN consists of the sets

[ s ] = {f ∈ ZN : s ⊆ f},

where s ranges over all finite sequences of integers. For natural numbers k < m,
[k,m) = {k, k+ 1, . . . ,m− 1}. For a partial function f : N → Z, |f | is the function
with the same domain, which satisfies |f |(n) = |f(n)|, where in this case | · | denotes
the absolute value. For partial functions f, g : N → N with dom(f) ⊆ dom(g),
f ≤ g means: For each n in the domain of f , f(n) ≤ g(n). Similarly, f ≤ k
means: For each n in the domain of f , f(n) ≤ k. Finally, for a set X and k ∈ N,
[X]k = {F ⊆ X : |F | = k}.

In a manner similar to the characterizations given in [19], we prove the following.
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Theorem 7. Assume that G is a subgroup of ZN. The following conditions are
equivalent:

(1) Gk is Menger-bounded.
(2) For each increasing h ∈ NN, there is f ∈ NN such that

(∀F ∈ [G]k)(∃n)(∀g ∈ F ) |g| � [0, h(n)) ≤ f(n).

(3) For each increasing h ∈ NN, there is f ∈ NN such that

(∀F ∈ [G]k)(∃∞n)(∀g ∈ F ) |g| � [0, h(n)) ≤ f(n).

(4) There is f ∈ NN such that

(∀F ∈ [G]k)(∃∞n)(∀g ∈ F ) |g| � [0, n) ≤ f(n).

Proof. (1 ⇒ 2) Fix an increasing h ∈ NN. For each n, take Un = [ 0 � [0, h(n)) ].
Using Lemma 5, find finite Fn ⊆ G, n ∈ N, such that each k-element subset of G is
contained in Fn + Un for some n. Define f ∈ NN by

f(n) = max{|a(i)| : a ∈ Fn and i < h(n)}

for each n. Fix F ∈ [G]k. Take n such that F ⊆ Fn + Un. For each g ∈ F , there is
a ∈ Fn such that g ∈ a+ Un = [ a � [0, h(n)) ]; that is, g � [0, h(n)) = a � [0, h(n)),
and therefore |g| � [0, h(n)) = |a| � [0, h(n)) ≤ f(n).

(2 ⇒ 1) Assume that {Un}n∈N is a sequence of neighborhoods of 0 in ZN. Take
an increasing h ∈ NN such that [ 0 � [0, h(n)) ] ⊆ Un for each n. Apply (2) for h
to obtain f . For each n and each s ∈ Z[0,h(n)) with |s| ≤ f , choose (if possible)
as ∈ G such that as � [0, h(n)) = s. If this is impossible, take as = 0. Let
Fn = {as : s ∈ Z[0,h(n)), |s| ≤ f}. We claim that the sets Fn are as required in
Lemma 5. Given F ∈ [G]k, let n be such that |g| � [0, h(n)) ≤ f(n) for each g ∈ F .
Then for each g ∈ F , there is s ∈ Z[0,h(n)) such that g � [0, h(n)) = s = as � [0, h(n)),
and thus

g ∈ [ as � [0, h(n)) ] = as + [ 0 � [0, h(n)) ] ⊆ as + Un ⊆ Fn + Un.

(1 ⇒ 3) Let N =
⋃

m Im be a partition into infinite sets. Fix m. For each n ∈ Im,
take Un = [ 0 � [0, h(n)) ]. The arguments of (1 ⇒ 2) show that there is fm : Im →
N such that for each F ∈ [G]k, there is n ∈ Im such that |g| � [0, h(n)) ≤ fm(n) for
all g ∈ F . Take f =

⋃
m fm.

(3 ⇒ 2) and (3 ⇒ 4) are trivial.
(4 ⇒ 3) This was pointed out by Banakh and Zdomskyy, and later independently

by Simon. Indeed, fix any increasing h ∈ NN. Let f be as in (4). We may assume

that f is increasing. Define f̃(n) = f(h(n+ 1)) for each n. Fix F ∈ [G]k.

I = {n : n > h(0) and (∀g ∈ F ) |g| � [0, n) ≤ f(n)}

is infinite. For each such n ∈ I, let m be such that n ∈ [h(m), h(m+1)). Then for
each g ∈ F ,

|g| � [0, h(m)) ≤ |g| � [0, n) ≤ f(n) ≤ f(h(m+ 1)) = f̃(m).

As I is infinite, there are infinitely many such m. �
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3. An important corollary of the main theorem

The purpose of this section is twofold: Making a significant corollary of our main
result (Theorem 11) accessible to a wider audience, and exposing the reader to the
technically delicate proof of Theorem 11 via a more accessible proof. Readers who
are experienced with cardinal characteristics of the continuum may, however, wish
to try moving directly to the next section, which is essentially self-contained.

Theorem 8 (CH). There is a Menger-bounded group G ≤ ZN such that G2 is not
Menger-bounded.

We first give an informal outline of the proof. Assume the Continuum Hypothe-
sis. By transfinite induction on α < ℵ1, we will choose generators gα0 , g

α
1 ∈ ZN and

let G ≤ ZN be the group generated by {gα0 , gα1 : α < ℵ1}.
Enumerate Z2 = {(an, bn) : n ∈ N} with each pair (a, b) occurring infinitely

often, and enumerate ZN = {dα : α < ℵ1}. At step α, let Mα ≤ ZN contain all
functions encountered in earlier steps, as well as dα, and assume that Mα is closed
under all operations required in the proof. Mα is countable, and we choose hα ∈ NN

which grows much faster than any element of Mα. Fix n. We choose a solution
of anx + bny = 0 over Z with max{|x|, |y|} ≥ dα(hα(n+ 1)), but not greater than
necessary (henceforth: minimal solution). For each k ∈ [h(n), h(n+1)), we set
(gα0 (k), g

α
1 (k)) = (x, y).

The fact that max{|gα0 (hα(n))|, |gα1 (hα(n))|} ≥ dα(hα(n + 1)) guarantees that
G2 is not Menger-bounded (using Theorem 7(4)).

The proof that G is Menger-bounded is more subtle (a preservation argument).
A general element of G is a linear combination

g = r1g
α1
0 + t1g

α1
1 + · · ·+ rMgαM

0 + tMgαM
1

over Z, for some α1 < · · · < αM < ℵ1. Consider the partial sum r1g
α1
0 + t1g

α1
1 . The

minimal solution function belongs to Mα1
, and using the fact that hα1

increases
much faster than members of Mα1

, we find infinitely many j such that

|r1gα1
0 + t1g

α1
1 | � [0, j) ≤ j.

By induction, we assume that for infinitely many j, the m−1-st partial sum satisfies

(1) |r1gα1
0 + t1g

α1
1 + · · ·+ rm−1g

αm−1

0 + tm−1g
αm−1 | � [0, j) ≤ cj,

where c is some constant, and prove the same assertion for the m-th partial sum.
The set of j-s which satisfy (1) defines a function which belongs to Mαm−1

, and
consequently almost each interval [hαm

(n), hαm
(n+1)) contains such a j. Take n

such that (an, bn) = (rm, tm), and take j satisfying (1). On the interval [hαm
(n), j),

rmgαm
0 + tmgαm

1 is 0, and thus the m-th partial sum is equal to the m− 1-st partial
sum, and the same bound cj applies on that interval. To take care of [0, hαm

(n)),
we modify the above argument so that hαm

(n+1) ≤ j, and use the fact that hαm
(n)

is much smaller than hαm
(n+ 1) in a direct calculation.

At the end, there will be infinitely many j such that the M -th partial sum, which
is equal to g, will be bounded on [0, j) by some constant multiple of j, which is
bounded, for example, by j2.

Proof of Theorem 8. Fix a partition of N into infinitely many infinite sets Il, l ∈ N.
Replacing each Il with the set {2n, 2n+ 1 : n ∈ Il}, we may assume that for each
even n, n ∈ Il if, and only if, n + 1 ∈ Il. Enumerate Z2 as {(an, bn) : n ∈ N},
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such that the sequence {(an, bn)}n∈Il is constant for each l. Fix an enumeration
{dα : α < ℵ1} of all increasing members of NN.

We carry out a construction by induction on α < ℵ1. Step α: For each m, take
a solution to the homogeneous linear equation amx+ bmy = 0 over Q. Multiplying
(x, y) by a large enough integer multiple of the common denominator of x and y,
we may assume that x, y ∈ Z and max{|x|, |y|} ≥ N for any prescribed N . Using
that, define nondecreasing functions ϕα,m ∈ NN, m ∈ N, by

ϕα,m(n) = min

{
max{|x|, |y|} :

x, y ∈ Z, amx+ bmy = 0,
max{|x|, |y|} ≥ dα(n)

}
,

and consequently define ϕα ∈ NN by

ϕα(n) = max{ϕα,m(n) : m ≤ n}.

Let Mα ⊆ ZN be the smallest set (with respect to inclusion) containing ϕα and
all functions defined in stages < α, and such that Mα is closed under all operations
relevant for the proof. For example, closing Mα under the following operations
suffices:

(a) g(n) �→ ĝ(n) = max{|g(m)| : m ≤ n};
(b) for each c ∈ N: g(n) �→ g<c(n) = min{j : n ≤ j, g(j) < c·(j+1)}, whenever

g<c is well-defined;
(c) (f, g) �→ f + g;
(d) g �→ −g.

((c)+(d) mean that Mα ≤ ZN.)
By induction, Mα is countable. Take an increasing hα ∈ NN such that for each

f ∈ Mα,

f(hα(n)) < hα(n+ 1)

for all but finitely many n.1

Define gα0 , g
α
1 ∈ ZN as follows: For each n, choose c, d ∈ Z2 as in the definition

of ϕα,n(hα(n+ 1)), and define (gα0 (hα(n)), g
α
1 (hα(n))) = (c, d) so that for all n,

ang
α
0 (hα(n)) + bng

α
1 (hα(n)) = 0, and(2)

max{|gα0 (hα(n))|, |gα1 (hα(n))|} = ϕα,n(hα(n+ 1)) ≥ dα(hα(n+ 1)).

The remaining values of the functions gαi are defined by declaring these functions
constant on each interval [hα(n), hα(n+1)).

Take the generated subgroup G = 〈gα0 , gα1 : α < ℵ1〉 of ZN. We will show that G
is as required in the theorem.

G2 is not Menger-bounded. Let f ∈ NN. Take α < ℵ1 such that f(n) < dα(n) for
all n. For each m, let n be such that m− 1 ∈ [hα(n), hα(n+1)). As each function
gαi is constant on the interval [hα(n), hα(n+1)), we have by (2) that

max{|gα0 (m− 1)|, |gα1 (m− 1)|}
= max{|gα0 (hα(n))|, |gα1 (hα(n))|} ≥ dα(hα(n+ 1)) ≥ dα(m) > f(m).

This violates Theorem 7(4) for k = 2.

1To achieve that, enumerate Mα ∩ NN = {fn : n ∈ N}, define hα(0) = 0, and inductively for
each n > 0, define hα(n+ 1) = max{hα(n), f0(hα(n)), . . . , fn(hα(n))}+1.
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G is Menger-bounded. Take f(n) = n2. We will prove that f is as required in
Theorem 7(4).

Fix g ∈ G. Then there are M ∈ N, α1 < · · · < αM < ℵ1, and integers
r1, t1, . . . , rM , tM such that

g = r1g
α1
0 + t1g

α1
1 + · · ·+ rMgαM

0 + tMgαM
1 .

Let g0 = 0, and for each m = 1, . . . ,M define

(3) gm = r1g
α1
0 + t1g

α1
1 + · · ·+ rmgαm

0 + tmgαm
1 .

We prove, by induction on m = 0, . . . ,M , that for an appropriate constant cm, we
have (using the notation in (a) on page 1756) that

ĝm(j) ≤ cm · (j + 1)

for infinitely many j.
The case m = 0 is trivial. We show how to move from m− 1 to m. Assume that

Jm−1 = {j : ĝm−1(j) ≤ cm−1 · (j + 1)}

is infinite.
By (2), for each n > 0,

max{|gαm
0 (hαm

(n− 1))|, |gαm
1 (hαm

(n− 1))|}
= ϕαm,n−1(hαm

(n)) ≤ ϕαm
(hαm

(n)).

As ϕαm
and hαm

are nondecreasing,

max{ĝαm
0 (hαm

(n− 1)), ĝαm
1 (hαm

(n− 1))} ≤ ϕαm
(hαm

(n)),

and since ϕαm
∈ Mαm

,

max{ĝαm
0 (hαm

(n− 1)), ĝαm
1 (hαm

(n− 1))}(4)

≤ ϕαm
(hαm

(n)) < hαm
(n+ 1)

for all but finitely many n.
As α1, . . . , αm−1 < αm and Mαm

≤ ZN, gm−1 ∈ Mαm
. Thus, g̃ = ĝm−1 ∈

Mαm
. As Jm−1 is infinite, we have (using the notation of (b) on page 3) that

g̃<cm−1
(n) = min{j : n ≤ j ∈ Jm−1} is well defined, and g̃<cm−1

∈ Mαm
. Conse-

quently, g̃<cm−1
(hαm

(n + 1)) < hαm
(n + 2) for all but finitely many n. In other

words, for each large enough n, there is j ∈ Jm−1 such that

(5) hαm
(n+ 1) ≤ j < hαm

(n+ 2).

Let l be such that for each n ∈ Il, (an, bn) = (rm, tm). For each large enough
even n ∈ Il, (an, bn) = (an+1, bn+1) = (rm, tm), and thus by (2),

rmgαm
0 (hαm

(n)) + tmgαm
1 (hαm

(n)) = 0,

rmgαm
0 (hαm

(n+ 1)) + tmgαm
1 (hαm

(n+ 1)) = 0.

By (3),

(6) gm � [hαm
(n), hαm

(n+ 2)) = gm−1 � [hαm
(n), hαm

(n+ 2)).

Fix j as in (5). Let p ∈ [0, j + 1).
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Case 1: p ≥ hαm
(n). As j < hαm

(n+ 2),

[hαm
(n), j + 1) ⊆ [hαm

(n), hαm
(n+ 2)),

and by (6) and the membership j ∈ Jm−1,

(7) |gm(p)| = |gm−1(p)| ≤ ĝm−1(j) ≤ cm−1 · (j + 1).

Case 2: p < hαm
(n). By the definition of gm,

|gm(p)| ≤ |gm−1(p)|+ 2max{|rm|, |tm|} ·max{|gαm
0 (p)|, |gαm

1 (p)|}.
As p < hαm

(n) ≤ j ∈ Jm−1, |gm−1(p)| ≤ ĝm−1(j) ≤ cm−1 · (j + 1). Using p ≤
hαm

(n)− 1, (4), and hαm
(n+ 1) ≤ j, we obtain

|gαm
i (p)| ≤ ĝαm

i (hαm
(n)− 1) = ĝαm

i (hαm
(n− 1)) < hαm

(n+ 1) ≤ j

for each i = 0, 1. Together with (7), we have that

|gm(p)| ≤ |gm−1(p)|+ 2max{|rm|, |tm|} ·max{|gαm
0 (p)|, |gαm

1 (p)|}
≤ cm−1 · (j + 1) + 2max{|rm|, |tm|}j
≤ cm−1 · (j + 1) + 2max{|rm|, |tm|} · (j + 1)

= (cm−1 + 2max{|rm|, |tm|}) · (j + 1).

Take cm = cm−1 + 2max{|rm|, |tm|}.

We have proved that for almost all even n ∈ Il there is

j ∈ [hαm
(n+ 1), hαm

(n+ 2))

such that j ∈ Jm. There are infinitely many even n ∈ Il, and therefore Jm is
infinite. This completes the inductive proof.

Now, for each j in the infinite set JM such that cM ≤ j,

|g| � [0, j + 1) ≤ ĝ(j) ≤ cM · (j + 1) ≤ (j + 1)2 = f(j + 1).

By Theorem 7, G is Menger-bounded. �

It is rather straightforward to extend the above proof to get for each k, a group
G ≤ ZN such that Gk is Menger-bounded, but Gk+1 is not. To see that, have a
quick look at the proof of Theorem 11.

4. The main theorem

Our main Theorem 11 requires a weak portion of the Continuum Hypothesis, that
is best stated in terms of cardinal characteristics of the continuum. An excellent
introduction to the topic is [8]. However, we give a self-contained treatment.

For f, g ∈ NN, f ≤∗ g means f(n) ≤ g(n) for all but finitely many n. A subset
Y of NN is bounded if there is g ∈ NN such that f ≤∗ g for all f ∈ Y . At the other
extreme, a subset Y of NN is dominating if for each f ∈ NN there is g ∈ Y such
that f ≤∗ g.

b is the minimal cardinality of an unbounded subset of NN, and d is the minimal
cardinality of a dominating subset of NN. An argument as in footnote 1 shows that
ℵ1 ≤ b. Thus, ℵ1 ≤ b ≤ d ≤ 2ℵ0 . The hypothesis b = d is strictly weaker than
the Continuum Hypothesis [8]. By inspection, one can see that for the proof of
Theorem 8, it suffices to assume that b = d. To extend this observation further, we
introduce the following new cardinal characteristics.
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Definition 9. Fix a partition P = {Il : l ∈ N} of N such that for each l, there are
infinitely many n such that n, n + 1 ∈ Il. For f ∈ NN and an increasing h ∈ NN,
write

[f � h] = {n : f(h(n)) < h(n+ 1)}.
d′(P) is the cardinal such that the following are equivalent:

(1) κ < d′(P).
(2) For each Y ⊆ NN such that |Y | = κ, there is an increasing h ∈ NN such

that for each f ∈ Y ,

(∀l)(∃∞n) n, n+ 1 ∈ Il ∩ [f � h].

Clearly, b ≤ d′(P) ≤ d for each P. We first point out that the hypothesis “there
is P such that d′(P) = d” is strictly weaker than the hypothesis b = d. Let cov(M)
be the minimal cardinality of a cover of NN by meager (first category) sets. It is
consistent that b < cov(M) = d [8].

Lemma 10. For each P, cov(M) ≤ d′(P).

Proof. Fix a partition P = {Il : l ∈ N} of N such that for each l, there are infinitely
many n such that n, n+1 ∈ Il. Let N

↑N be the set of all increasing elements of NN.
N↑N is homeomorphic to NN. It therefore suffices to find a cover of N↑N by d′(P)
many nowhere-dense subsets of N↑N.

Take Y ⊆ NN such that |Y | = d′(P) and such that Definition 9(2) fails for Y .
That is: For each h ∈ N↑N, there are f ∈ Y and l such that

(∀∞n) n, n+ 1 ∈ Il → f(h(n)) ≥ h(n+ 1) or f(h(n+ 1)) ≥ h(n+ 2).

For f ∈ Y and l,m ∈ N, let

Yf,l,m =

{
h ∈ N↑N :

(∀n ≥ m) n, n+ 1 ∈ Il
→ f(h(n)) ≥ h(n+ 1) or f(h(n+ 1)) ≥ h(n+ 2)

}
.

Yf,l,m is nowhere dense in N↑N: Given k and an increasing finite sequence s ∈ Nk, let
n ≥ max{k,m} be such that n, n+1 ∈ Il. Let s̃ be an extension of s to an increasing
sequence of length n+ 3 such that f(s̃(n)) < s̃(n+ 1) and f(s̃(n+ 1)) < s̃(n+ 2).
Then Yf,l,m ∩ [ s̃ ] = ∅.

As
⋃
{Yf,l,m : f ∈ Y, l,m ∈ N} = N↑N, cov(M) ≤ d′(P) · ℵ0 = d′(P). �

A more thorough analysis of the cardinals d′(P) is carried out by Mildenberger
[22].

Theorem 11. Assume that there is P such that d′(P) = d. Then for each k,
there is a group G ≤ ZN such that Gk is Menger-bounded but Gk+1 is not Menger-
bounded.

Proof. Fix a partition P = {Il : l ∈ N} of N such that for each l, there are infinitely
many n such that n, n+ 1 ∈ Il, and such that d′(P) = d.

Enumerate Zk×(k+1) as {An : n ∈ N}, such that the sequence {An}n∈Il is con-
stant for each l. Fix a dominating family of increasing functions {dα : α < d} ⊆ NN.
For v = (v0, . . . , vk) ∈ Zk+1, write ‖v‖ or ‖v0, . . . , vk‖ for max{|v0|, . . . , |vk|} (the
supremum norm of v).
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We carry out a construction by induction on α < d. Step α: Define functions
ϕα,m ∈ NN, m ∈ N, by

ϕα,m(n) = min{‖v‖ : v ∈ Zk+1, ‖v‖ ≥ dα(n), Amv = �0}.

Also, define ϕα ∈ NN by

(8) ϕα(n) = max{ϕα,m(n) : m ≤ n}.

Let Mα ⊆ ZN be the smallest set (with respect to inclusion) containing ϕα and
all functions defined in stages < α, and such that Mα is closed under all operations
relevant for the proof. For example, closing Mα under the following operations
suffices:

(a) g(n) �→ ĝ(n) = max{|g(m)| : m ≤ n};
(b) (g(n), f(n)) �→ max{|g(n)|, |f(n)|};
(c) for each c ∈ N: g(n) �→ g<c(n) = min{j : n ≤ j, g(j) < c·(j+1)}, whenever

g<c is well-defined;
(d) (f, g) �→ f + g;
(e) g �→ −g.

There are countably many such operations, and by induction, |Mα| ≤ max{ℵ0, |α|}
< d = d′(P). By the definition of d′(P), there is an increasing hα ∈ NN such that
for each f ∈ Mα ∩ NN,

(9) (∀l)(∃∞n) n, n+ 1 ∈ Il ∩ [f � hα].

Define k + 1 elements gα0 , . . . , g
α
k ∈ ZN as follows: For each n, let v ∈ Zk+1 be a

witness for the definition of ϕα,n(hα(n+ 1)); namely,

ϕα,n(hα(n+ 1)) = ‖v‖ ≥ dα(hα(n+ 1)),(10)

Anv = �0,(11)

and define ⎛
⎜⎝
gα0 (hα(n))

...
gαk (hα(n))

⎞
⎟⎠ = v,

so that

(12) An ·

⎛
⎜⎝
gα0 (hα(n))

...
gαk (hα(n))

⎞
⎟⎠ = �0.

The remaining values of the functions gαi are defined by declaring these functions
constant on each interval [hα(n), hα(n+1)). By (10) and (12),

(13) ‖gα0 (hα(n)), . . . , g
α
k (hα(n))‖ = ϕα,n(hα(n+ 1))

for all n.
Take the generated subgroup G = 〈gα0 , . . . , gαk : α < d〉 of ZN. We will show that

G is as required in the theorem.
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Gk+1 is not Menger-bounded. We use Theorem 7. Let f ∈ NN. Take α < d such
that f <∗ dα, and set F = {gα0 , . . . , gαk } ∈ [G]k+1. For each large enough m,
f(m) < dα(m). Fix such an m. Let n be such that m− 1 ∈ [hα(n), hα(n+1)). As
each function gαi is constant on the interval [hα(n), hα(n+1)), and using (13) and
(10), we have that

‖gα0 (m− 1), . . . , gαk (m− 1)‖
= ‖gα0 (hα(n)), . . . , g

α
k (hα(n))‖ = ϕα,n(hα(n+ 1))

≥ dα(hα(n+ 1)) ≥ dα(m) > f(m).

This violates Theorem 7(4) for the power k + 1.

Gk is Menger-bounded. Take f(n) = n2. Clearly, f dominates all functions fc(n) =
c · n, c ∈ N. We will prove that f is as required in Theorem 7(4).

Fix F = {g0, . . . , gk−1} ⊆ G. Then there are M ∈ N, α1 < · · · < αM < d, and
matrices B1, . . . , BM ∈ Zk×(k+1) such that⎛

⎜⎝
g0
...

gk−1

⎞
⎟⎠ = B1

⎛
⎜⎝
gα1
0
...

gα1

k

⎞
⎟⎠+ · · ·+BM

⎛
⎜⎝
gαM
0
...

gαM

k

⎞
⎟⎠.

Let g0,0 = · · · = gk−1,0 = 0, and for each m = 1, . . . ,M let

(14)

⎛
⎜⎝

g0,m
...

gk−1,m

⎞
⎟⎠ = B1

⎛
⎜⎝
gα1
0
...

gα1

k

⎞
⎟⎠+ · · ·+Bm

⎛
⎜⎝
gαm
0
...

gαm

k

⎞
⎟⎠.

We prove, by induction on m = 0, . . . ,M , that for an appropriate constant cm,
there are infinitely many j such that

‖ĝ0,m(j), . . . , ĝk−1,m(j)‖ ≤ cm · (j + 1).

By the definition of f , this suffices.
The case m = 0 is trivial. We show how to move from m− 1 to m. Assume that

Jm−1 = {j : ‖ĝ0,m−1(j), . . . , ĝk−1,m−1(j)‖ ≤ cm−1 · (j + 1)}

is infinite.
As α1, . . . , αm−1 < αm, we have by (14) that g0,m−1, . . . , gk−1,m−1 ∈ Mαm

. By
(a), (b), (c), the functions

g(n) = ‖ĝ0,m−1(n), . . . , ĝk−1,m−1(n)‖

and g<cm−1
both belong to Mαm

. Note that

(15) g<cm−1
(n) = min{j : n ≤ j ∈ Jm−1}

and is therefore well defined. Thus, max{g<cm−1
, ϕαm

} ∈ Mαm
.

For each i ≤ k and each n > 0, as n− 1 ≤ hαm
(n), we have by (13) that

|gαm
i (hαm

(n− 1))| ≤ ϕαm,n−1(hαm
(n)) ≤ ϕαm

(hαm
(n)).

As ϕαm
and hαm

are nondecreasing,

(16) ‖ĝαm
0 (hαm

(n− 1)), . . . , ĝαm

k (hαm
(n− 1))‖ ≤ ϕαm

(hαm
(n)).
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Thus, if l is such that for each n ∈ Il, An = Bm, we have by (15) and (16) that

I =

⎧⎨
⎩n :

An = An+1 = Bm,
(∃j ∈ Jm−1) hαm

(n+ 1) ≤ j < hαm
(n+ 2),

‖ĝαm
0 (hαm

(n− 1)), . . . , ĝαm

k (hαm
(n− 1))‖ < hαm

(n+ 1)

⎫⎬
⎭

⊇

⎧⎨
⎩n :

n, n+ 1 ∈ Il,
g<cm−1

(hαm
(n+ 1)) < hαm

(n+ 2),
ϕαm

(hαm
(n)) < hαm

(n+ 1)

⎫⎬
⎭

⊇ {n : n, n+ 1 ∈ Il ∩ [max{g<cm−1
, ϕαm

} � hαm
]}.

As max{g<cm−1
, ϕαm

} ∈ Mαm
, we have by the definition of hαm

(9) that the last
set is infinite, and therefore so is I.

Let n ∈ I. Then An = An+1 = Bm, and thus by (11) and (12),

Bm ·

⎛
⎜⎝
gαm
0 (hαm

(n))
...

gαm

k (hαm
(n))

⎞
⎟⎠ = Bm ·

⎛
⎜⎝
gαm
0 (hαm

(n+ 1))
...

gαm

k (hαm
(n+ 1))

⎞
⎟⎠ = �0.

By (14), for each i < k,

(17) gi,m � [hαm
(n), hαm

(n+ 2)) = gi,m−1 � [hαm
(n), hαm

(n+ 2)).

As n ∈ I, there is j ∈ Jm−1 such that hαm
(n+ 1) ≤ j < hαm

(n+ 2), and

(18) ‖ĝαm
0 (hαm

(n− 1)), . . . , ĝαm

k (hαm
(n− 1))‖ < hαm

(n+ 1).

Let p ∈ [0, j + 1).

Case 1: p ≥ hαm
(n). As j < hαm

(n+ 2),

[hαm
(n), j + 1) ⊆ [hαm

(n), hαm
(n+ 2)),

and by (17) and the membership j ∈ Jm−1,

(19) |gi,m(p)| = |gi,m−1(p)| ≤ ĝi,m−1(j) ≤ cm−1 · (j + 1)

for all i < k.

Case 2: p < hαm
(n). Let C be the maximal absolute value of a coordinate of Bm.

For all i < k, by the definition of gi,m,

(20) |gi,m(p)| ≤ |gi,m−1(p)|+ (k + 1)C ·max{|gαm
i (p)| : i ≤ k}.

As p < hαm
(n) ≤ j ∈ Jm−1, |gi,m−1(p)| ≤ ĝi,m−1(j) ≤ cm−1 · (j + 1). Using

p ≤ hαm
(n)−1,(18), gαm

i being constant on [hαm
(n−1), hαm

(n)) and hαm
(n+1) ≤ j,

we obtain

|gαm
i (p)| ≤ ĝαm

i (hαm
(n)− 1) = ĝαm

i (hαm
(n− 1)) < hαm

(n+ 1) ≤ j

for each i ≤ k. Together with (19), we have that

|gi,m(p)| ≤ |gi,m−1(p)|+ (k + 1)C ·max{|gαm
i (p)| : i ≤ k}

≤ cm−1 · (j + 1) + (k + 1)Cj

≤ cm−1 · (j + 1) + (k + 1)C · (j + 1)

= (cm−1 + (k + 1)C) · (j + 1).

Take cm = cm−1 + (k + 1)C. We have proved that for each n ∈ I there is j ∈
[hαm

(n + 1), hαm
(n + 2)) such that j ∈ Jm. I is infinite, and therefore so is Jm.

This completes the inductive proof, and consequently the proof of Theorem 11. �
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Remark 12. Mildenberger has recently proved that our assumption in Theorem 11
can be weakened to d ≤ r [22].
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