
c© de Gruyter 2007
J. Math. Crypt. 1 (2007), 359–372 DOI 10.1515 / JMC.2007.018

Length-based cryptanalysis:
the case of Thompson’s group

Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

Communicated by Rainer Steinwandt

Abstract. The length-based approach is a heuristic for solving randomly generated equations in
groups that possess a reasonably behaved length function. We describe several improvements of the
previously suggested length-based algorithms, which make them applicable to Thompson’s group
with significant success rates. In particular, this shows that the Shpilrain-Ushakov public key cryp-
tosystem based on Thompson’s group is insecure, and suggests that no practical public key cryp-
tosystem based on the difficulty of solving an equation in this group can be secure.

Keywords. Length-based cryptanalysis, noncommutative cryptography, combinatorial group theory
and cryptography.

AMS classification. 20F10, 94A60.

1 Introduction

Noncommutative groups are often suggested as a platform for public key agreement
protocols, and much research is dedicated to analyzing existing proposals and suggest-
ing alternative ones (see, e.g., [1, 5, 4, 6, 7, 10, 11, 12], and references therein).

One possible approach for attacking such systems was outlined by Hughes and Tan-
nenbaum [6]. This approach relies on the existence of a good length function on the
underlying group, i.e., a function `(g) that tends to grow as the number of generators
multiplied to obtain g grows. Such a length function can be used to solve, heuristically,
arbitrary random equations in the group [5].

In the case of the braid group, a practical realization of this approach was suggested
in [5], and the method was extended in [4] to imply high success rates for subgroups
of the braid group, which are of the type considered in some previously suggested
cryptosystems (e.g., [1]).

This length-based cryptanalysis usually has smaller success rates than specialized
attacks, but it has the advantage of being generic in the sense that, if there is a good
length function on a group, then the attack applies with nontrivial success rates to
all cryptosystems based on this group (provided that an equation in the group can be
extracted from the public information).

The main problem with existing length-based algorithms is that they tend to perform
well only when the underlying subgroup has few relations, i.e., it is not too far from
the free group. This is not the case in Richard Thompson’s group F , since it has a
maximal set of relations: Any nontrivial relation added to it makes it abelian [3]. In

Third author: Supported by the Koshland Center for Basic Research.

360 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

2004, Shpilrain and Ushakov proposed a key exchange protocol that uses Thompson’s
group F as its platform and reported a complete failure of a length-based attack on
their cryptosystem [11].

In the sequel we introduce several improvements to the length-based algorithms,
which yield a tremendous boost in the success rates for full size instances of the cryp-
tosystem. The generalized algorithms presented here are not specific for Thompson’s
group, and would be useful in testing the security of any future cryptosystem based on
combinatorial group theoretic problems.

1.1 History and related works

The results reported here form the first practical cryptanalysis of the Shpilrain-Ushakov
cryptosystem: The first version of our attack was announced in the Bochum Workshop
Algebraic Methods in Cryptography (November 2005) [8]. An improved attack was
announced in the CGC Bulletin in March 2006 [9].

While we were finalizing our paper for publication, a very elegant specialized attack
on the same cryptosystem was announced by Matucci [7]. The main contribution of the
present paper is thus the generalization of the length-based algorithms to make them
applicable to a wider class of groups. Moreover, while our general attack can be easily
adapted to other possible cryptosystems based on Thompson’s group, this may not be
the case for Matucci’s specialized methods.

2 The basic length-based attack

Let G be a finitely generated group with SG = {g±1
1 , . . . , g±1

k } being its set of genera-
tors. Assume that x ∈ G is generated as a product, x = x1 · · ·xn, where each xi ∈ SG

is chosen at random according to some nontrivial (e.g., uniform) distribution on SG.
Assume further that w ∈ G is chosen in a way independent of x, and that x,w are
unknown, but z = xw ∈ G is known. Suppose that there is a “length function” `(g) on
the elements of G, such that with a nontrivial probability,

`(x−1
1 z) < `(z) < `(xjz)

for each xj 6= x−1
1 . To retrieve x, we can try to “peel off” the generators that compose

it, one by one, using the following procedure.

Algorithm 2.1 (Length-based attack).

(1) Let j ← 1 and y ← z.

(2) For each g ∈ SG compute g−1y.

(3) Consider the h ∈ SG that minimizes `(h−1y). (If several such h’s exist, choose
one arbitrarily or randomly).

(4) (a) If j = n, terminate.

(b) Otherwise, Let hj ← h, j ← j + 1 and y ← h−1y and return to step (2).

Length-based cryptanalysis: the case of Thompson’s group 361

If ` is a good length function, then in step (3), with some nontrivial probability,
h = x1 (or at least y can be rewritten as a product of n or fewer generators, where h is
the first). It follows that with a nontrivial (though smaller) probability, x = h1h2 · · ·hn

after termination.
Instead of assuming that n is known, we can assume that there is a known, reason-

ably sized, bound N on n, and then terminate the run after N steps and consider it
successful if for some k ≤ N , x = h1 · h2 · · ·hk. This way, we obtain a short list of
N candidates for x. In many practical situations each suggestion for a solution can be
tested, so this is equally good.

In this algorithm, as well as in the ones that follow, the decisions are soft in the
sense that if an incorrect generator is chosen at some stage, this may be repaired later
if a generator that cancels it out (using the group relations) is chosen.

However, in practice the known length functions in many types of groups are not
good enough for Algorithm 2.1 to succeed with noticeable probability. This is shown
in [5], and is demonstrated further by the Shpilrain-Ushakov key agreement protocol.

3 The Shpilrain-Ushakov key agreement protocol

This section is entirely based on [11].

3.1 Thompson’s group

Thompson’s group F is the infinite noncommutative group defined by the following
generators and relations:

F = 〈 x0, x1, x2, . . . | x−1
i xkxi = xk+1 (k > i) 〉 (3.1)

Each w ∈ F admits a unique normal form [3] which has the following structure:

w = xi1 · · ·xirx
−1
jt
· · ·x−1

j1
,

where i1 ≤ · · · ≤ ir, j1 ≤ · · · ≤ jt, and if xi and x−1
i both occur in this form, then either

xi+1 or x−1
i+1 occurs as well. The transformation of an element of F into its normal form

is very efficient: Starting with a word w of length n, the number of required operations
is bounded by a small constant multiple of n log n [11].

Definition 3.1. The normal form length of an element w ∈ F , `NF(w), is the number
of generators in its normal form: If the normal form of w is xi1 · · ·xirx

−1
jt
· · ·x−1

j1
, then

`NF(w) = r + t.

3.2 The protocol

(0) Alice and Bob agree (publicly) on subgroups A,B, W of F , such that ab = ba for
each a ∈ A and each b ∈ B.

(1) A public word w ∈W is selected.

362 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

(2) Alice selects privately at random elements a1 ∈ A and b1 ∈ B, computes

u1 = a1wb1 ,

and sends u1 to Bob.
(3) Bob selects privately at random elements a2 ∈ A and b2 ∈ B, computes

u2 = b2wa2 ,

and sends u2 to Alice.
(4) Alice computes

KA = a1u2b1 = a1b2wa2b1 ,

whereas Bob computes

KB = b2u1a2 = b2a1wb1a2 .

As a1b2 = b2a1 and a2b1 = b1a2, KA = KB and so the parties share the same group
element, from which a secret key can be derived.

3.3 Settings and parameters

Fix a natural number s ≥ 2. Let SA = {x0x
−1
1 , . . . , x0x

−1
s }, SB = {xs+1, . . . , x2s} and

SW = {x0, . . . , xs+2}. Denote by A, B, and W the subgroups of F generated by SA,
SB , and SW , respectively. A and B commute elementwise, as required [11].

Let L be a positive integer. The words a1, a2 ∈ A, b1, b2 ∈ B, and w ∈ W are all
chosen of normal form length L, as follows: Let X be A, B, or W . Start with the
empty word, and multiply it on the right by a (uniformly) randomly selected generator,
inverted with probability 1

2 , from the set SX . Continue this procedure until the normal
form of the word has length L.

For practical implementation of the protocol, it is suggested in [11] to use s ∈
{3, 4, . . . , 8} and L ∈ {256, 258, . . . , 320}.

4 Success rates for the basic length attack

The cryptanalyst is given w, u1, u2, where u1 = a1wb1 and u2 = b2wa2. This gives rise
to 4 equations:

u1 = a1wb1

u2 = b2wa2

u−1
1 = b−1

1 w−1a−1
1

u−1
2 = a−1

2 w−1b−1
2

He can apply Algorithm 2.1 to each equation, hoping that its leftmost unknown element
will appear in the resulting list of candidates. Note that even a single success out of the
4 runs suffices to find the shared key.

Length-based cryptanalysis: the case of Thompson’s group 363

Here n, the number of generators multiplied to obtain each element, is not known.
We took the bound 2L on n, as experiments show that the success probability does
not increase noticeably when we increase the bound further. This is the case in all
experiments described in this paper.

Experiments show that the success probability of finding a1 given a1wb1 is the same
as that of finding a−1

2 given a−1
2 w−1b−1

2 , that is, the usage of the same w in both cases
does not introduce noticeable correlations. A similar assertion holds for b2 and b−1

1 .
We may therefore describe the task in a compact manner:

Given awb, try to recover either a or b.

The probabilities pa, pb of successfully recovering a and b (respectively) induce the
total success rate by 1− (1− pa)2(1− pb)2.

The attack was tested for the minimal recommended value s = 3, and for the cut-
down lengths L ∈ {4, 8, . . . , 128}. (Each attack in this paper was tested against at least
1000 random keys, in order to evaluate its success rates.)

The results, presented in Table 1, show that this is not a viable attack: The recom-
mended parameter is L ≥ 256, and already for L = 128 the attack failed in all of our
tries.

Table 1. Success rates for the basic length attack (s = 3)

L a recovery b recovery Total
4 88.4% 82.6% 99.96%
8 62.3% 56.2% 97.3%

16 29.1% 26.9% 73.1%
32 10.2% 8.2% 32%
64 0.9% 1% 3.7%

128 0% 0% 0%

5 Using memory

To improve the success rates, it was suggested in [4] to keep in memory, after each
step, not only the element that yielded the shortest length, but a fixed number M > 1
of elements with the shortest lengths among all tested elements. Then, in the next step,
all possible extensions of each one of the M elements in memory with each one of the
generators are tested and again the best M elements among them are kept (see [4] for
a formal description of this algorithm).

The time and space complexities of this attack increase linearly with M . The pre-
vious length-based attack is the special case of the memory attack, where M = 1.
Except for pathological cases, the success rates increase when M is increased. See [4]
for more details.

364 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

We have implemented this attack against the minimal recommended parameters s =
3, L = 256, and with each M ∈ {4, 16, 64, 256, 1024}. The success rates appear in
Table 2.

Table 2. Success rates for the basic length attack with memory (s = 3, L = 256)

M a recovery b recovery Total
≤ 64 0% 0% 0%

256 1.5% 0.1% 3.2%
1024 5.7% 0.1% 11.3%

We see that M must be rather large in order to obtain high success rates. The exper-
iments in [4] yielded much higher success rates for braid groups. The reason for this
seems to be that the length-based approach is more suitable for groups which have few
relations (i.e., are close to being free) [5], whereas here the underlying groups have
many relations. The next section shows how to partially overcome this problem.

6 Avoiding repetitions

During the run of the algorithm described in the previous section, we keep a hash list.
Before checking the length score of an element, we check if it is already in the hash list
(i.e., it has been considered in the past). If it is, we drop it from the list of candidates.
Otherwise, we add it to the hash list and proceed as usual.

In the case M = 1, this forces the algorithm not to get into loops. Thus, this im-
provement can be viewed as a generalization of avoiding loops to the case of arbitrary
M .

6.1 Results

The results for s = 3, L = 256 are summarized in Table 3.

Table 3. Success rates for repetition-free memory attack (s = 3, L = 256)

M a recovery b recovery Total
4 0% 0% 0%

16 2.3% 1.1% 6.6%
64 10.8% 2.3% 24%

256 14.3% 3.8% 32%
1024 20.4% 11% 49.8%

Length-based cryptanalysis: the case of Thompson’s group 365

It follows that our improvement is crucial for the current system: Compare 50% for
M = 1024 in Table 3 to the 11% for the same M obtained in Table 2 before we have
discarded repetitions.

A success rate of 50% should be considered a complete cryptanalysis of the sug-
gested cryptosystem. We will, however, describe additional improvements, for two
reasons.

Generality

The Shpilrain-Ushakov cryptosystem is just a test case for our algorithms. Our main
aim is to obtain generic algorithms that will also work when other groups are used, or
when Thompson’s group is used in a different way.

Iterability

As pointed out by Shpilrain [10], there is a very simple fix for key agreement protocols
that are broken with probability less than p: Agree on k independent keys in parallel,
and XOR them all to obtain the final shared key. The probability of breaking the shared
key is at most pk. In other words, if a system broken with probability p0 or higher is
considered insecure, and k parallel keys are XORed, then the attack on a single key
should succeed in probability at least p

1/k
0 . If we consider a parallel agreement on up

to 100 keys practical, and require the probability of breaking all of them to be below
2−64, then we must aim at a success rate of at least 2−64/100 ≈ 64%. For p0 = 2−32, we
should aim at 80%.

7 Interlude: memory is better than look-ahead

An alternative extension of the basic attack is obtained by testing in each step not
just the 2k generators in SG, but all the (2k)t t-tuples of generators g±1

i1
· · · g±1

it
. After

computing the length of each of the peeled-off results, one takes only the first generator
of the leading t-tuple, and repeats the process. This is called look-ahead of depth t
[6, 5]. The complexity of this approach grows exponentially with t.

In order to compare this approach with the memory approach, we should compare
attacks using roughly the same number of operations. The products of all possible t-
tuples can be precomputed, so that each step requires (2k)t group multiplications. In
the memory attack, each step requires M · 2k group multiplications. Thus, look-ahead
of depth t should be compared to M = (2k)t−1.

7.1 Results

The look-ahead attack was tested for s = 3, L = 256. We tried t ∈ {2, 3, 4}, which
correspond to M ∈ {6, 62, 63}, respectively. The results are presented in Table 4. For
t = 3, 4, we have also tried the intermediate approach where a look-ahead of depth t−i
is performed (i = 1, 2) for each member of the list and M = (2k)i.

366 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

Table 4. Success rates for look-ahead LA, memory attack M, and combined M&LA
(s = 3, L = 256)

a recovery b recovery Total
t M t, M LA M LA M LA M M&LA
2 6 — 0% 0.1% 0% 0.6% 0% 1.4% —
3 36 2,6 0.1% 7.4% 0.1% 3.6% 0.4% 20.3% 6.8%
4 216 2,36 1.4% 16.8% 0.8% 8.3% 4.3% 41.8% 31.2%

3,6 14.4%

It follows that increasing M is always better than using look-ahead of similar com-
plexity. This was also observed in [5, 4] for other settings.

8 Automorphism attacks

Recall our problem briefly: G = 〈SG〉, where SG = {g±1
1 , . . . , g±1

k }. x,w ∈ G are
unknown and chosen independently, and z = xw ∈ G is known. We wish to find (a
short list containing) x. Write x = h1 · · ·hn.

Let ϕ be an automorphism of G. Applying ϕ, we have that ϕ(z) = ϕ(x)ϕ(w), and
ϕ(x) = ϕ(h1) · · ·ϕ(hn). This translates the problem into the same group generated
differently: G = 〈ϕ(SG)〉, where ϕ(SG) = {ϕ(g1)±1, . . . , ϕ(gk)±1}. Solving the
problem in this group to find ϕ(x), gives us x.

Solving the problem in the representation of G according to ϕ is equivalent to solv-
ing the original problem with the alternative length function

`ϕ(w) = `(ϕ(w)).

Indeed,
`(ϕ(gi)±1ϕ(x)ϕ(w)) = `(ϕ(g±1

i xw)) = `ϕ(g±1
i xw).

It could happen that a certain key which is not cracked by a given length attack using
a length function `, would be cracked using `ϕ.

If we choose ϕ at “random” (the canonical example being an inner automorphism
ϕ(w) = g−1wg for some “random” g), we should expect smaller success rates, but on
the other hand the introduced randomness may be useful in one of the following ways.
Let Φ be a finite set of automorphisms of G.

Average length attack

We can take the average length

`Φ(w) =
1
|Φ|

∑
ϕ∈Φ

`ϕ(w).

Length-based cryptanalysis: the case of Thompson’s group 367

If the elements ϕ of Φ are chosen independently according to some distribution, then

lim
|Φ|→∞

`Φ(w) = E(`ϕ(w)),

where the expectancy is with regards to the distribution of the chosen elements ϕ. This
approach should be useful when the length function `E(w) = E(`ϕ(w)) is good. This
would be the case if there are only weak correlations between the different length func-
tions: Roughly speaking, if there are weak correlations between the different length
functions `ϕ, and for a random ϕ the probability of getting a correct generator is some
p with ε = p− (1− p) > 0, then for |Φ| = O(1/ε2), a correct generator will get the the
shortest average length `Φ almost certainly.

Multiple attacks

Write Φ = {ϕ1, . . . , ϕm}. We can attack the key using `ϕ1 . If we fail, we attack the
same key again using `ϕ2 , etc. Here too, if there are weak correlations between the
different length functions and |Φ| is large, then we are likely to succeed.

In the case of Thompson’s group F , the family of automorphisms is well understood
(they are all conjugations by elements of some well defined larger group) [2]. However,
since we are interested in “generic” attacks, we considered only inner automorphisms.

8.1 Results

All experiments were run for parameters s = 3, L = 256 and without memory ex-
tensions (M = 1). All conjugators defining the inner automorphisms were random
elements of length 64. The complexity of the two described attacks is similar to that of
the memory attack with M = |Φ|.

Average length attack

We tried the average length attack with |Φ| ∈ {4, 16, 64, 256, 1024}. Not a single one
of the experiments was successful. This implies either that the correlation between the
different length functions is rather high or that the actual success probability for a given
length function is very low.

Multiple attacks

The success rates appear in Table 5.
While an improvement is observed, it is also seen that there remain substantial cor-

relations and the success rate does not increase fast enough when |Φ| is increased.
Comparing the results to those in Table 3, we see that in the current setting, increasing
the memory is far better than using many automorphisms.

368 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

Table 5. Success rates for the multiple attack (s = 3, L = 256)

|Φ| a recovery b recovery Total
4 0.1% 0% 0.2%

16 0.9% 0% 1.8%
64 2.2% 0% 4.4%

256 2.2% 0% 4.4%
1024 2.5% 0% 4.9%

9 Alternative solutions

Thus far, we have concentrated on the problem: Given w and awb, find the original
a, or rather, a short list containing a. But as Shpilrain and Ushakov point out [12], it
suffices to solve the following problem.

Problem 9.1 (Decomposition). Given w ∈ F and u = awb where a ∈ A and b ∈ B,
find some elements ã ∈ A and b̃ ∈ B, such that ãwb̃ = awb.

Indeed, assume that the attacker, given u1 = a1wb1, finds ã1 ∈ A and b̃1 ∈ B, such
that ã1wb̃1 = a1wb1. Then, because u2 = b2wa2 is known, the attacker can compute

ã1u2b̃1 = ã1b2wa2b̃1 = b2ã1wb̃1a2 = b2u1a2 = KB ,

and similarly for b2wa2.
Consider Problem 9.1. To each ã ∈ A we can compute its complement

b̃ = w−1ã−1u = w−1ã−1(awb) ,

such that ãwb̃ = awb. The pair ã, b̃ is a solution to this problem if, and only if, b̃ ∈ B. A
similar comment applies if we start with b̃ ∈ B. This involves being able to determine
whether b̃ ∈ B (or ã ∈ A in the second case). This membership decision problem turns
out to be trivial in our case.

A is exactly the set of all elements in F , whose normal form is of the type

xi1 . . . ximx−1
jm

. . . x−1
j1

,

i.e., positive and negative parts are of the same length, and in addition ik − k < s and
jk − k < s for every k = 1, . . . ,m. B consists of the elements in F , whose normal
form does not contain any of the generators x0, x1, . . . , xs (or their inverses) [11]. In
both cases, the conditions are straightforward to check.

Following is an algorithm for solving Problem 9.1, which incorporates the new flex-
ibility into the halting rule.

Length-based cryptanalysis: the case of Thompson’s group 369

Algorithm 9.1 (Alternative solution search).

(1) Execute Algorithm 2.1 (with any of the introduced extensions), attempting to re-
cover a.

(2) For each candidate (prefix) ã encountered during any step of the algorithm, com-
pute the complement b̃ = w−1ã−1u.

(3) If b̃ ∈ B, halt.

Note that if the algorithm halts in step (3), then ã, b̃ is a solution for the decomposi-
tion problem.

The above procedure can be executed separately for each of the four given equations.
It suffices to recover a single matching pair in any of the four runs to effectively break
the cryptosystem.

9.2 When the group membership problem is hard

It should be stressed that solving the group membership is not necessary in order to
cryptanalyze the system. Indeed, given u1 = a1wb1 and u2 = b2wa2, we can apply
Algorithm 9.1 to, e.g., u1 = a1wb1, replacing its step (3) by checking whether the
suggested key ãu2b̃ succeeds in decrypting the information encrypted between Alice
and Bob. Our experiments showed that for all reasonable parameters, this formally
stronger attack has the same success rates. However, this alternative approach is useful
in other groups, in which the membership problem is difficult.

9.3 Results

We have repeated all major experiments for s = 3, L = 256, but this time considered
each alternative solution a success. We consider only the repetition-free versions of the
attacks, as they are much more successful.

Average automorphism attack

While being substantially better than the 0% reported in Section 8.1 before allowing
alternative solutions, the results here are still not satisfactory: For all values |Φ| ∈
{4, 16, . . . , 1024}, the average rates were close to 17%. This suggests that in this set-
ting, the average length converges to the expected length very quickly.

Multiple attack

The success rates for the multiple attack (page 367) are quite good when alternative
solutions are accepted, as shown in Table 6.

It is observed, though, that no significant improvement is obtained when moving
from |Φ| = 256 to |Φ| = 1024 (what looks in the table like a drop in the probability
is probably a statistical fluctuation, but it still shows that the real probability does not
increase substantially).

370 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

Table 6. Success rates for the multiple attack (s = 3, L = 256)

|Φ| a recovery b recovery Total
4 7.1% 13.7% 35.7%

16 11.3% 20.4% 50.1%
64 11.5% 23.3% 53.9%

256 16.7% 24.5% 60.4%
1024 14.5% 20.2% 53.4%

Memory attack

This attack, which corresponds to Section 6.1 but allows alternative solutions, gives
the best results on the studied case. We have tried it against the minimal suggested
parameters (s = 3, L = 256), as well as the maximal suggested parameters (s =
8, L = 320). The results appear in Table 7.

Table 7. Success rates for memory attack with alternative solutions

s = 3, L = 256 s = 8, L = 320
M a b Total a b Total

1 9.3% 5.3% 26.2% 8.0% 6.1% 25.4%
4 12.1% 7.4% 33.7% 10.9% 10.9% 37.0%

16 15.6% 10.9% 43.4% 11.3% 11.5% 38.4%
64 27.8% 14.7% 62.1% 17.3% 13.1% 48.4%

256 35.8% 20.1% 73.7% 18.0% 15.3% 51.8%
1024 41.5% 25.0% 80.7% 22.2% 14.5% 55.8%

Note that for s = 3, L = 256, we have that M = 16 with alternative solution search
gives success rates almost equal to those of M = 1024 (which is 64 times slower)
without it, and that M = 1024 with alternative solution search results in success rate
of about 80%.

It is also interesting to observe that while increasing the parameters reduces the
success rates, the success rates are significant even when the maximal recommended
parameters are taken.

Based on Table 7, we conclude that the Shpilrain-Ushakov cryptosystem is broken,
even if iterated up to one hundred times.

Length-based cryptanalysis: the case of Thompson’s group 371

10 Conclusions

We have described several improvements on the standard length based attack and its
memory extensions. They include:

(1) Avoiding repetitions, which is especially important in groups such as Thompson’s
group F , that are far from being free;

(2) Attacking each key multiple times, by applying each time a random automor-
phism, or equivalently taking the length function induced by such automorphisms;

(3) Looking for alternative solutions which are not necessarily the ones used to gen-
erate the equations.

We have tested these improvements against the Shpilrain-Ushakov cryptosystem, and
in this case each of them increased the success probability substantially, with (1) being
somewhat better than (2), and (3) being a useful addition to any of these. It could be
that for other cryptosystems, (2) will prove to be better than (1).

The important advantage of our approach is that it is generic and can be easily ad-
justed to any cryptosystem based on a group that admits a reasonable length function
on its elements. As such, we believe that no cryptosystem leading to equations in a
noncommutative group can be considered secure before tested against these attacks.

It is a fascinating challenge to find an alternative platform group where the attacks
presented here fail. Such a platform may exist, and the methods presented here should
be useful for dismissing many of the insecure candidates.

Acknowledgments. We thank Francesco Matucci for his useful comments on this
paper.

References

[1] I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography,
Mathematical Research Letters 6 (1999), pp. 287–291.

[2] M. G. Brin, The chameleon groups of Richards J. Thompson: automorphisms and dynamics,
Publications Mathématiques de l’IHÉS 84 (1996), pp. 5–33.

[3] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory Notes to Richard Thompson’s Groups,
L’Enseignement Mathématique 42 (1996), pp. 215–256.

[4] D. Garber, S. Kaplan, M. Teicher, B. Tsaban, and U. Vishne, Probabilistic solutions of equa-
tions in the braid group, Advances in Applied Mathematics 35 (2005), pp. 323–334.

[5] , Length-based conjugacy search in the Braid group. Contemporary Mathematics, 418,
pp. 75–87. American Mathematical Society, Providence, R.I., 2006.

[6] J. Hughes and A. Tannenbaum, Length-based attacks for certain group based encryption
rewriting systems. Workshop SECI02 Sécurité de la Communication sur Internet, 2002.

[7] F. Matucci, Cryptanalysis of the Shpilrain-Ushakov protocol for Thompson’s group, Journal of
Cryptology, to appear.

372 Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

[8] D. Ruinskiy, A. Shamir, and B. Tsaban, Cryptanalysis of the Shpilrain-Ushakov
Thompson group cryptosystem (preliminary announcement), http://homepage.ruhr-uni-
bochum.de/Arkadius.Kalka/workshop05/articles/researchannouncement.pdf, 2005.

[9] , CGC Bulletin 5, Item 7, March 2006,
http://www.cs.biu.ac.il/∼tsaban/CGC/Issues/CGC5.txt.

[10] V. Shpilrain, Assessing security of some group based cryptosystems. Contemporary Mathemat-
ics, 360, pp. 167–177. American Mathematical Society, Providence, R.I., 2004.

[11] V. Shpilrain and A. Ushakov, Thompson’s group and public key cryptography. ACNS 2005,
Lecture Notes in Computer Science 3531, pp. 151–164. Springer, Berlin, New York, 2005.

[12] , The conjugacy search problem in public key cryptography: unnecessary and insuffi-
cient, Applicable Algebra in Engineering, Communication and Computing 17 (2006), pp. 285–
289.

Received 27 February, 2007; revised 31 May, 2007

Author information

Dima Ruinskiy, Department of Computer Science and Applied Mathematics, Weizmann Institute
of Science, Rehovot 76100, Israel.
Email: dr st@mail.ru

Adi Shamir, Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot 76100, Israel.
Email: adi.shamir@weizmann.ac.il

Boaz Tsaban, Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel; and De-
partment of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
Email: tsaban@math.biu.ac.il

http://www.cs.biu.ac.il/~tsaban/CGC/Issues/CGC5.txt

	Introduction
	History and related works

	The basic length-based attack
	The Shpilrain-Ushakov key agreement protocol
	Thompson's group
	The protocol
	Settings and parameters

	Success rates for the basic length attack
	Using memory
	Avoiding repetitions
	Results

	Interlude: memory is better than look-ahead
	Results

	Automorphism attacks
	Results

	Alternative solutions
	When the group membership problem is hard
	Results

	Conclusions

