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We construct Menger subsets of the real line whose product is not Menger in the 
plane. In contrast to earlier constructions, our approach is purely combinatorial. The 
set theoretic hypothesis used in our construction is far milder than earlier ones, and 
holds in almost all canonical models of set theory of the real line. On the other hand, 
we establish productive properties for versions of Menger’s property parameterized 
by filters and semifilters. In particular, the Continuum Hypothesis implies that 
every productively Menger set of real numbers is productively Hurewicz, and each 
ultrafilter version of Menger’s property is strictly between Menger’s and Hurewicz’s 
classic properties. We include a number of open problems emerging from this study.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A topological space X is Menger if for each sequence U1,U2, . . . of open covers of the space X, there are 
finite subsets F1 ⊆ U1, F2 ⊆ U2, . . . whose union forms a cover of the space X. This property was introduced 
by Karl Menger [17], and reformulated as presented here by Witold Hurewicz [11]. Menger’s property is 
strictly between σ-compact and Lindelöf. Now a central notion in topology, it has applications in a number 
of branches of topology and set theory. The undefined notions in the following example, which are available 
in the indicated references, are not needed for the remainder of this paper.

Example 1.1. Menger spaces form the most general class for which a positive solution of the D-space problem 
is known [2, Corollary 2.7], and the most general class for which a general form of Hindman’s Finite Sums 
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Theorem holds [27]. In set theory, Menger’s property characterizes filters whose Mathias forcing notion does 
not add dominating functions [9].

Menger’s property is hereditary for closed subsets and continuous images. By a classic result of Todor-
čević there are, provably, Menger spaces X and Y such that the product space X × Y is not Menger [24, 
§3]. It remains open whether there are, provably, such examples in the real line, or even just metrizable 
examples [25, Problem 6.7]. This problem, proposed by Scheepers long ago, resisted tremendous efforts thus 
far.

For brevity, sets of real numbers are called here real sets.1 An uncountable real set is Luzin if its intersec-
tion with every meager (Baire first category) set is countable. Assuming the Continuum Hypothesis, there 
are two Luzin sets whose product is not Menger [12, Theorem 3.7]. An uncountable real set X is concen-
trated if it has a countable subset D such that the set X \U is countable for every open set U containing D. 
Every Luzin set is concentrated, and every concentrated set has Menger’s property. This approach extends 
to obtain similar examples using a set theoretic hypothesis about the meager sets that is weaker than the 
Continuum Hypothesis [21, Theorem 49]. Later methods [29, Theorem 9.1] were combined with reasoning 
on meager sets to obtain examples using another portion of the Continuum Hypothesis [19, Theorem 3.3].

We introduce a purely combinatorial approach to products of Menger sets. We obtain examples using 
hypotheses milder than earlier ones, as well as examples using hypotheses that are incompatible with the 
Continuum Hypothesis. To this end, we introduce the key notion of bi-d-unbounded set, and determine the 
limits on its possible existence. We extend these results to variations of Menger’s property parameterized 
by filters and semifilters (defined below). For a semifilter S, we introduce the notion of S-scale. These scales 
provably exist, and capture a number of distinct special cases used in earlier works.

The second part of the paper, beginning with Section 5, establishes provably productive properties among 
semifilter-parameterized Menger properties. If S is an ultrafilter, then every S-scale gives rise to a real set 
that is productively S-Menger. We deduce that each of these variations of Menger’s property is strictly 
between Hurewicz’s and Menger’s classic properties.

The last section includes a discussion of related results and open problems suggested by this study.

2. Products of Menger sets

Towards a combinatorial treatment of the questions discussed here, we identify the Cantor space {0, 1}N
with the family P(N) of all subsets of the set N. Since the Cantor space is homeomorphic to Cantor’s set, 
every subspace of the space P(N) is considered as a real set.

The space P(N) splits into two important subspaces: the family of infinite subsets of N, denoted [N]∞, 
and the family of finite subsets of N, denoted [N]<∞. We identify every set a ∈ [N]∞ with its increasing 
enumeration, an element of the Baire space NN. Thus, for a natural number n, a(n) is the n-th element in 
the increasing enumeration of the set a. This way, we have [N]∞ ⊆ NN, and the topology of the space [N]∞

(a subspace of the Cantor space P(N)) coincides with the subspace topology induced by NN. This explains 
some of the elementary assertions made here; moreover, notions defined here for [N]∞ are often adaptations 
of classic notions for NN. Depending on the interpretation, points of the space [N]∞ are referred to as sets 
or functions.

For functions a, b ∈ [N]∞, we write a ≤ b if a(n) ≤ b(n) for all natural numbers n, and a ≤∗ b if 
a(n) ≤ b(n) for almost all natural numbers n, that is, the set of exceptions { n : b(n) < a(n) } is finite. We 
follow the convention that bounded means has an upper bound in the ambient superset.

1 The term real set is a natural extension of the standard notions real number, real matrix, real function, etc., and should be 
understood as a convenient abbreviation. It does not imply that other sets are less “real”.
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Definition 2.1. Let κ be an infinite cardinal number. A set X ⊆ [N]∞ with |X| ≥ κ is κ-unbounded if the 
cardinality of every ≤-bounded subset of the set X is smaller than κ.

Remark 2.2. For cardinal numbers κ of uncountable cofinality, which will be the case in the present paper, 
the notion of κ-unbounded defined here is equivalent to its variation using the relation ≤∗ instead of ≤. 
This is not the case for cardinal numbers of countable cofinality.

Let κ be an infinite cardinal number. A topological space X with |X| ≥ κ is κ-concentrated on a countable 
set D ⊆ X if |X \ U | < κ for all open sets U containing D.

Every compact set K ⊆ [N]∞ is ≤-bounded. A classic argument of Lawrence [15, Propositions 2–3] implies 
that, for each cardinal number κ, the existence of a κ-concentrated real set is equivalent to the existence of 
a κ-unbounded set in [N]∞. Essentially, this is due to the following fact.

Lemma 2.3. Let κ be a cardinal number, and X ⊆ [N]∞ be a set with |X| ≥ κ. The set X is κ-unbounded if 
and only if the real set X ∪ [N]<∞ is κ-concentrated on [N]<∞.

Proof. (⇒) Let U ⊆ P(N) be an open set containing the set [N]<∞. The set K := P(N) \U is a closed, and 
thus compact, subset of P(N). Since U ⊇ [N]<∞, we have K ⊆ [N]∞. Since compact subsets of [N]∞ are 
≤-bounded and the set X is κ-unbounded, we have

∣∣(X ∪ [N]<∞) ∩K
∣∣ = |X ∩K| < κ.

(⇐) For each bound b ∈ [N]∞, the set K := { a ∈ [N]∞ : a ≤ b } is compact. Thus, the set U := P(N) \K
is an open set containing [N]<∞, and we have |X \ U | < κ. �

A set X ⊆ [N]∞ is dominating if for each function a ∈ [N]∞ there is a function x ∈ X such that a ≤∗ x. Let 
d be the minimal cardinality of a dominating set in [N]∞. Much information about the cardinal number d, 
and about other ones defined below, is available [7]. Every real set of cardinality smaller than d is Menger, 
and no dominating subset of [N]∞ is Menger [12, Theorem 4.4]. The former assertion implies that every 
d-concentrated real set is Menger.2

Corollary 2.4. For each d-unbounded set X ⊆ [N]∞, the real set X ∪ [N]<∞ is Menger. �
Definition 2.5. For functions a, b ∈ [N]∞, we write a ≤∞ b if b ≮∗ a, that is, if a(n) ≤ b(n) for infinitely 
many natural numbers n. For a set X ⊆ [N]∞ and a function b ∈ [N]∞, we write X ≤∞ b if x ≤∞ b for each 
function x ∈ X. This convention applies to all binary relations.

There are, provably, d-unbounded sets and cf(d)-unbounded sets: Let { dα : α < d } be a dominating 
set. For each ordinal number α < d, take a function xα ∈ [N]∞ such that { dβ, xβ : β < α } <∞ xα. Then 
the set { xα : α < d } is d-unbounded. Taking a cofinal subset I ⊆ d of cardinality cf(d), we obtain the 
cf(d)-unbounded set { xα : α ∈ I }.

Lemma 2.6. For sets a, b ∈ P(N), let

a � b := (2a) ∪ (2b + 1) = { 2k : k ∈ a } ∪ { 2k + 1 : k ∈ b }.

Then:

2 Moreover, d-concentrated sets have the stronger selective property S1(Γ, O) [6,26].
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(1) For each set a ∈ [N]∞ and each natural number n, we have (a � a)(2n) = 2a(n) + 1.
(2) For all sets a, b, c, d ∈ [N]∞ with a ≤ b and c ≤ d, we have a � c ≤ b � d. �
Theorem 2.7. Let κ ∈ {cf(d), d}, and X ⊆ [N]∞ be a set containing a κ-unbounded set. There is a 
d-concentrated real set Y such that the planar set X × Y is not Menger.

Proof. Let A ⊆ X be a κ-unbounded set. By moving to a subset of A, we may assume that |A| = κ. Let 
D ⊆ [N]∞ be a dominating set of cardinality d. Decompose

D =
⋃

a∈A

Ia

such that 
∣∣⋃

a∈B Ia
∣∣ < d for all sets B ⊆ A of cardinality smaller than κ. (If κ = d, we can take every set Ia

to be a singleton.) Fix elements a ∈ A and d ∈ Ia. Take a function d′ ∈ [N]∞ such that a, d ≤ d′. Consider 
the set { a � d′ : a ∈ A, d ∈ Ia }. Its cardinality is at most d, and since its projection on the odd coordinates 
is dominating, its cardinality is exactly d.

Claim 2.8. The set { a � d′ : a ∈ A, d ∈ Ia } is d-unbounded.

Proof. Let b ∈ [N]∞. Define b′(n) := b(2n) for all natural numbers n. Let K := { a ∈ A : a ≤ b′ }. Then 
|K| < κ.

Let a ∈ A \K and d ∈ Ia. There is a natural number n such that

b(2n) = b′(n) < a(n) ≤ 2a(n) + 1 = (a � a)(2n) ≤ (a � d′)(2n),

and thus a � d′ � b. Therefore,

|{ a � d′ : a ∈ A, d ∈ Ia, a � d′ ≤ b }| ≤ |{ a � d′ : a ∈ K, d ∈ Ia }| < d. �
By Lemma 2.3, the real set

Y := { a � d′ : a ∈ A, d ∈ Ia } ∪ [N]<∞

is d-concentrated on the set [N]<∞. In particular, the set Y is Menger.
For sets a, b ∈ P(N), let a ⊕ b denote the symmetric difference of the sets a and b. With respect to the 

operator ⊕, the space P(N) is a topological group.

Claim 2.9. The set (2X) ⊕ Y is a dominating subset of [N]∞.

Proof. For all sets a, b, c ∈ P(N), we have (2a) ⊕(b �c) = (a ⊕b) �c ⊇ 2c +1. It follows that (2X) ⊕Y ⊆ [N]∞.
For each function d in the dominating set D we started with, let a ∈ A be a function such that d ∈ Ia. 

As a ∈ X and a � d′ ∈ Y , we have

2a⊕ (a � d′) = (a⊕ a) � d′ = ∅ � d′ = 2d′ + 1 ∈ (2X) ⊕ Y.

Since d ≤ d′ ≤ 2d′ + 1 for all functions d ∈ D, the set (2X) ⊕ Y is dominating. �
In summary, the set (2X) ⊕Y is a continuous image of the planar set X ×Y in [N]∞ that is dominating. 

It follows that the space X × Y is not Menger. �
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Let X be a real set of cardinality smaller than d. Then the set X is trivially Menger: the topology used 
is irrelevant, as long as we restrict attention to countable covers. In particular, all finite powers of the set 
X are Menger, even for countable Borel covers; a strong property [21].

Theorem 2.10. Assume that cf(d) < d. There are real sets X and Y such that |X| < d and the set Y is 
d-concentrated, but the planar set X × Y is not Menger.

Proof. By the discussion preceding Lemma 2.6, there are cf(d)-unbounded sets in [N]∞. Apply Theorem 2.7
to any of these sets. �

Let κ be a cardinal number. A real set of cardinality at least κ is κ-Luzin if the cardinalities of its 
intersections with meager sets are all smaller than κ. Let cov(M) be the minimal cardinality of a cover 
of the real line by meager sets, and cof(M) be the minimal cardinality of a cofinal family of meager real 
sets. The hypothesis cov(M) = cof(M) implies that there are cov(M)-Luzin sets whose product is not 
Menger [21, Theorem 49]. Since cov(M) ≤ d, every cov(M)-Luzin set is d-concentrated, and thus Menger. 
In general, cov(M) ≤ d ≤ cof(M), and thus the following corollary implies (using the same hypothesis) 
that for every cov(M)-Luzin set L there is a d-concentrated real set Y such that the planar set L × Y is 
not Menger.

Corollary 2.11. Let κ ∈ {cf(d), d}. For each κ-Luzin set L, there is a d-concentrated real set Y such that the 
planar set L × Y is not Menger. In particular, if ℵ1 = cf(d), then this is the case for every Luzin set.

Proof. By applying a homeomorphism, we may assume that L ⊆ [N]∞. Every κ-Luzin subset of [N]∞ is 
κ-unbounded. Apply Theorem 2.7. �

The most important application of Theorem 2.7 appears in the next section.

3. Bi-d-unbounded sets

For a set a ∈ P(N), let ac := N \a. Let [N]∞,∞ := { a ∈ [N]∞ : ac ∈ [N]∞ }, the family of infinite co-infinite 
subsets of N.

Definition 3.1. Let κ be an infinite cardinal number. A set X ⊆ [N]∞,∞ is bi-κ-unbounded if the sets X and 
{ xc : x ∈ X } ⊆ [N]∞ are both κ-unbounded.

Theorem 3.2. Let κ ∈ {cf(d), d}. Let X ⊆ [N]∞ be a bi-κ-unbounded set. Then:

(1) The real set X ∪ [N]<∞ is κ-concentrated. In particular, it is Menger.
(2) There is a d-concentrated real set Y such that the planar set (X ∪ [N]<∞) × Y is not Menger.

Proof. (1) By Corollary 2.4.
(2) The continuous image { xc : x ∈ X ∪ [N]<∞ } of the set X ∪ [N]<∞ in P(N) is a κ-unbounded subset 

of [N]∞. Apply Theorem 2.7. �
The existence of bi-d-unbounded sets and bi-cf(d)-unbounded sets is a mild hypothesis. A set r ∈ [N]∞

reaps a family A ⊆ [N]∞ if, for each set a ∈ A, both sets a ∩ r and a \ r are infinite. Let r be the minimal 
cardinality of a family A ⊆ [N]∞ that no set r reaps.
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For natural numbers n < m, let [n, m) := {n, n + 1, . . . , m − 1}.

Theorem 3.3. The following assertions are equivalent:

(1) d ≤ r.
(2) There are bi-d-unbounded sets in [N]∞.
(3) There are bi-cf(d)-unbounded sets in [N]∞.

Proof. (1) ⇒ (2), (3): We use the following lemma, to which we provide a short, direct proof.

Lemma 3.4 (Mejía [16]). Let X ⊆ [N]∞. If |X| < min{d, r}, then there is an element b ∈ [N]∞,∞ such that 
X ≤∞ b and X ≤∞ bc.

Proof. For a set x ∈ [N]∞ with 1 /∈ x, define a function x̃ ∈ [N]∞ by x̃(1) := x(1), and x̃(n + 1) := x(x̃(n))
for each natural number n.

We may assume that 1 /∈ x for all sets x ∈ X. Since |X| < d, there is a function a ∈ [N]∞ such that the 
sets

Ix := {n : |[a(n), a(n + 1)) ∩ x̃| ≥ 2 }

are infinite for all sets x ∈ X [7, Theorem 2.10]. Since |X| < r, there is a set r ∈ [N]∞ that reaps the family 
{ Ix : x ∈ X }. Define

b :=
⋃

n∈r

[a(n), a(n + 1)).

Fix a set x ∈ X. Let n be a member of the infinite set r ∩ Ix. There are at least two elements in the set 
[a(n), a(n + 1)) ∩ x̃; let x̃(i) be the minimal one. Then x(x̃(i)) = x̃(i + 1) ∈ [a(n), a(n + 1)). Since n ∈ r, the 
set bc ∩ [a(n), a(n + 1)) is empty, and thus a(n + 1) ≤ bc(x̃(i)). It follows that x(x̃(i)) < bc(x̃(i)). Similarly, 
every number n ∈ Ix \ r produces a number i such that x(x̃(i)) < b(x̃(i)). �

Let { dα : α < d } ⊆ [N]∞ be a dominating set. By Lemma 3.4, for each ordinal number α < d, there is 
a set xα ∈ [N]∞,∞ such that { dβ, xβ : β < α } <∞ xα, xcα. Then the set { xα : α < d } is bi-d-unbounded. 
Let I be a cofinal subset of the cardinal number d, of cardinality cf(d). Then the set { xα : α ∈ I } is 
bi-cf(d)-unbounded.

(2) ⇒ (1): We may assume that the cardinal number d is regular. Indeed, it is known that if r < d then 
d is regular.3 Thus, if d is singular, then d ≤ r, and we are done.

Let X ⊆ [N]∞ be a bi-d-unbounded set. Let A ⊆ [N]∞ be a family with |A| < d. We prove that the family 
A is reapable. We may assume that for each set a ∈ A and each finite set s, we have a \ s ∈ A.

Since the set X is bi-d-unbounded, the set

⋃

a∈A

{x ∈ X : x ≤∗ a or x ≤∗ ac }

is a union of less than d sets, each of cardinality smaller than d. Thus, there is an element r ∈ X that is not 
included in that set, that is, such that A <∞ r, rc.

3 In the notation of Section 4, fix an ultrafilter U with pseudobase P of cardinality r [7, Theorem 9.9], and take a ≤U -dominating 
set D of cardinality b(U), a regular cardinal number. Then the set { f ◦ p : f ∈ D, p ∈ P } is dominating, and thus d ≤ b(U)(≤ d).
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The set r reaps the family A: Fix a set a ∈ A. Assume that the set a ∩ r is finite. Then the set a′ := a \ r
is in A, and thus a′ <∞ rc. But a′ ⊆ rc, and thus rc ≤ a′; a contradiction. For the same reason, the set 
a \ r is infinite, too.

(3) ⇒ (1): If the cardinal number d is regular, then the previously established implication applies. And if 
it is singular, then as explained in the previous implication, we have d ≤ r. In either case, we are done. �

A topological space X is Rothberger if for each sequence U1,U2, . . . of open covers of X, there are elements 
U1 ∈ U1, U2 ∈ U2, . . . with X ⊆

⋃
n Un. Every real set of cardinality smaller than cov(M) is Rothberger [12, 

Theorem 4.2], and therefore so is every cov(M)-concentrated real set. Since cov(M) ≤ r [7, Theorem 5.19], 
we obtain the following result.

Corollary 3.5. Assume that cov(M) = d. Then there are two Rothberger real sets whose product is not 
Menger. �
4. Filter-Menger spaces

For sets a, b ∈ [N]∞, we write a ⊆∗ b if the set a \ b is finite. A semifilter [4] is a set S ⊆ [N]∞ such that, 
for each set s ∈ S and each set b ∈ [N]∞ with s ⊆∗ b, we have b ∈ S.4 Important examples of semifilters 
include the maximal semifilter [N]∞, the minimal semifilter cF of all cofinite sets, and every nonprincipal 
ultrafilter on N.

Let S be a semifilter. For functions a, b ∈ [N]∞, let

[a ≤ b] := {n : a(n) ≤ b(n) }.

We write a ≤S b if [a ≤ b] ∈ S. Let b(S) be the minimal cardinality of a ≤S-unbounded subset of [N]∞. 
For a semifilter S, let S+ := { a ∈ [N]∞ : ac /∈ S }. For all sets a ∈ S and b ∈ S+, the intersection a ∩ b

is infinite. For functions a, b ∈ [N]∞, we have that a �S b if and only if b <S+ a. The κ-unbounded sets 
presented in the previous sections are instances of the following notion, which generalizes the earlier notion 
of b(S)-scale [29, Definition 2.8].

Definition 4.1. Let S be a semifilter. A set X ⊆ [N]∞ with |X| ≥ b(S) is an S-scale if, for each function 
b ∈ [N]∞, there is a function c ∈ [N]∞ such that

b ≤S+ c ≤S x

for all but less than b(S) functions x ∈ X.

Proposition 4.2 ([29, Lemma 2.9]). For each semifilter S there is an S-scale.

Proof. Let { bα : α < b(S) } ⊆ [N]∞ be a ≤S-unbounded set. For each ordinal number α < b(S), there is a 
function xα ∈ [N]∞ such that { bβ, xβ : β < α } <S xα. The set { xα : α < b(S) } is an S-scale. Indeed, fix 
a function b ∈ [N]∞. There is an ordinal number β < b(S) such that bβ �S b, and thus b ≤S+ bβ . For each 
ordinal number α > β, we have bβ ≤S xα. �

Let S be a semifilter, and b, c, x ∈ [N]∞ functions satisfying b ≤S+ c ≤S x. Then the set [b ≤ x] contains 
the intersection [b ≤ c] ∩ [c ≤ x] of an element of S+ and an element of S. In particular, we have b ≤∞ x.

4 Semifilters are normally denoted by calligraphic letters. Here, we view them as sets of points in, and thus subspaces of, the 
Cantor space P(N). Thus, we use the standard typefaces, as we do for arbitrary points and sets in topological spaces.
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Proposition 4.3. Let S be a semifilter. Every S-scale is a b(S)-unbounded subset of [N]∞, and thus its union 
with the set [N]<∞ is b(S)-concentrated. In particular, no union of an S-scale and [N]<∞ is σ-compact [26, 
Lemma 1.6]. �

Let S be a semifilter. A topological space X is S-Menger if for each sequence U1,U2, . . . of open covers 
of X, there are finite sets F1 ⊆ U1, F2 ⊆ U2, . . . such that { n : x ∈

⋃
Fn } ∈ S for all points x ∈ X. 

A topological space is Menger if and only if it is [N]∞-Menger. For the filter cF of cofinite sets, the prop-
erty cF-Menger is the classic Hurewicz property [11]. Thus, for every semifilter S, we have the following 
implications.

Hurewicz =⇒ S-Menger =⇒ Menger.

A function Ψ from a topological space X into [N]∞ is upper continuous if the sets { x ∈ X : Ψ(x)(n) ≤ m }
are open for all natural numbers n and m. In particular, continuous functions are upper continuous. By 
earlier methods [18, Theorem 7.3], we have the following result.

Proposition 4.4. Let X be a topological space, and S be a semifilter. The following assertions are equivalent:

(1) The space X is S-Menger.
(2) The space X is Lindelöf, and every upper continuous image of X in [N]∞ is ≤S-bounded. �

For especially nice classes of spaces, such as Lindelöf zero-dimensional spaces or real sets, upper continuous
can be replaced by continuous in Proposition 4.4. In general, however, this is not the case: The properties 
considered here are hereditary for closed subsets. Consider the planar set

X := ((R \Q) × [0, 1]) ∪ (R× {1}) ⊆ R2.

This set is not Menger, since the non-Menger set (R \ Q) × {0} (homeomorphic to [N]∞) is closed in X. 
Since the set X is connected, every continuous image of X in [N]∞ is a singleton.

For a set a ∈ S+, let

Sa := { c ∈ [N]∞ : ∃s ∈ S, s ∩ a ⊆∗ c },

the semifilter generated by the sets { s ∩ a : s ∈ S }. The following observation generalizes an earlier result 
[29, Theorem 2.14].

Proposition 4.5. Let S be a semifilter, and X ⊆ [N]∞ be an S-scale. Every upper continuous image of the 
real set X ∪ [N]<∞ in [N]∞ is ≤Sa

-bounded for some set a ∈ S+.

Proof. Let Ψ: X ∪ [N]<∞ → [N]∞ be an upper continuous function. We use the forthcoming Lemma 5.1, in 
the case Y = {0}. This special case was, implicitly, established by Bartoszyński and Shelah [5, Lemma 2]. 
This lemma provides a function b ∈ [N]∞ such that Ψ(x)(n) ≤ b(n) for all functions x ∈ X and all 
natural numbers n with b(n) ≤ x(n). Since the set X is an S-scale, there is a function c ∈ [N]∞ such that 
b ≤S+ c ≤S x for all but less than b(S) functions x ∈ X. For these points x, we have that Ψ(x)(n) ≤ b(n)
for all natural numbers n ∈ [b ≤ c] ∩ [c ≤ x]. Take a := [b ≤ c].

The image of the remaining points of the set X ∪ [N]<∞ is ≤S-bounded by some member b′ ∈ [N]∞. Then 
any function d ∈ [N]∞ with b, b′ ≤ d is a bound as required. �

By filter we mean a semifilter closed under finite intersections. If F is a filter, then a ∩ b ∈ F+ for all sets 
a ∈ F and b ∈ F+. And if F is an ultrafilter, then F+ = F .
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Corollary 4.6. For every filter F , the union of every F -scale and [N]<∞ is F+-Menger, and if F is an 
ultrafilter, this union is F -Menger. �

Let b be the minimal cardinality of a ≤∗-unbounded subset of [N]∞.

Theorem 4.7. Assume that b = d. Let S be a semifilter. The following assertions are equivalent:

(1) The semifilter S is nonmeager.
(2) There are an S-scale X ⊆ [N]∞ and a d-concentrated real set Y such that the planar set (X∪ [N]<∞) ×Y

is not Menger.

Proof. (1) ⇒ (2): Let { dα : α < d } be a dominating subset of [N]∞. Fix an ordinal number α < d. Since 
b = d, there is a function b ∈ [N]∞ such that { dβ, xβ : β < α } <∗ b. The set { x ∈ [N]∞,∞ : b ≤∞ xc }
is comeager. Since the semifilter S is nonmeager, the set { x ∈ [N]∞,∞ : b ≤S x } is nonmeager [29, 
Corollary 3.4]. Thus, there is a set xα ∈ [N]∞,∞ such that b ≤S xα and b ≤∞ xcα. Then the set X := { xα :
α < d } is an S-scale, and it is bi-d-unbounded. Apply Theorem 2.7.

(2) ⇒ (1): Let S be a meager semifilter, and X ⊆ [N]∞ be an S-scale. By Theorem 5.4 below, the set 
X∪[N]<∞ is, in particular, Hurewicz. Products of Hurewicz sets and d-concentrated real sets are Menger [30, 
Theorem 4.6]. �

The set X∪[N]<∞ in Theorem 4.7 is not Hurewicz since its image under the function x �→ xc is unbounded 
in [N]∞. The existence of non-Hurewicz sets of this form follows from a weaker hypothesis [29, Theorem 3.9], 
but without the non-productive property. The product of every Hurewicz real set and every d-concentrated 
real set is Menger [30, Theorem 4.6]. The following theorem implies that this assertion cannot be established 
for spaces that are not Hurewicz.

Let P be a property of topological spaces. A real set X is productively P if for each topological space 
Y with the property P, the product space X × Y has the property P. The question whether productively 
P implies productively Q, for P and Q covering properties among those studied here, has a long history. 
The remainder of this paragraph assumes that d = ℵ1. Aurichi and Tall [3] improved several earlier results 
by proving that every productively Lindelöf space is Hurewicz. It was later shown that every productively 
Lindelöf space is productively Hurewicz and productively Menger [18, Theorem 8.2]. Thus, productively 
Lindelöf implies productively Menger, and the following theorem shows that productively Menger suffices 
to imply productively Hurewicz.

Theorem 4.8. Assume that b = d.

(1) For every unbounded set X ⊆ [N]∞, there is a d-concentrated real set Y such that the planar set X × Y

is not Menger.
(2) In the realm of hereditarily Lindelöf spaces: If a real set X is productively Menger, then it is productively 

Hurewicz.

Proof. (1) Let { dα : α < d } be a dominating set in [N]∞. Since b = d, for each ordinal number α < d the 
set { dβ : β < α } is bounded, and thus there is a function xα ∈ X such that { dβ , xβ : β < α } <∞ xα. Then 
the subset {xα : α < d } of the set X is d-unbounded, and Theorem 2.7 applies.

(2) Assume that there is a Hurewicz hereditarily Lindelöf space H such that the product space X ×H

is not Hurewicz. Then there is an unbounded upper continuous image Z of the space X ×H in [N]∞ [18, 
Theorem 7.3]. By (1), there is a d-concentrated real set Y such that the planar set Z × Y is not Menger. 
Since the set Z × Y is an upper continuous image of the product space X ×H × Y , the latter space is not 
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Menger, too. As the space H is Hurewicz and hereditarily Lindelöf and the set Y is d-concentrated, the 
product space H × Y is Menger [30, Theorem 4.6]. In summary, the product of the set X and the Menger, 
hereditarily Lindelöf space H × Y is not Menger. �

Some special hypothesis is necessary for Theorem 4.8: The union of less than g Menger real sets is 
Menger [31,28]. Assume that b < g. Then any unbounded real set X ⊆ [N]∞ of cardinality b is productively 
Menger but not Hurewicz.

5. Productive real sets

In this section, we establish preservation of some properties under products. We begin with a general-
ization of an earlier result [18, Lemma 6.3] to general topological spaces. The earlier proof [18, Lemma 6.3]
does not apply in this general setting; we provide an alternative proof.

Lemma 5.1 (Productive Two Worlds Lemma). Let X be a subset of [N]∞, Y be an arbitrary space, and 
Ψ: (X ∪ [N]<∞) × Y → [N]∞ be an upper continuous function. There is an upper continuous function 
Φ: Y → [N]∞ such that, for all points x ∈ X and y ∈ Y , and all natural numbers n:

If Φ(y)(n) ≤ x(n), then Ψ(x, y)(n) ≤ Φ(y)(n).

Proof. For natural numbers n and m, let Un
m := Ψ−1[{ a ∈ [N]∞ : a(n) ≤ m }]. For each natural number n, 

the family { Un
m : m ∈ N } is an ascending open cover of the product space (X ∪ [N]<∞) × Y . By enlarging 

the sets Un
m, we may assume that they are open in the larger space P(N) × Y .

Fix a point y ∈ Y and a natural number n. Set ay(1) := 1 and V y
1 := Y . For a natural number k, let m be 

the minimal natural number with P([1, ay(k))) × {y} ⊆ Un
m. Let ay(k + 1) be the minimal natural number 

such that ay(k + 1) ≥ m and P([ay(k), ay(k + 1))c) × {y} ⊆ Un
m. Since our open covers are ascending, we 

have

P([ay(k), ay(k + 1))c) × {y} ⊆ Un
ay(k+1).

Notice that the number ay(k + 1) is minimal with this property. As the set P([ay(k), ay(k + 1))c) × {y} is 
compact, there is an open neighborhood V y

k+1 ⊆ V y
k of the point y such that

P([ay(k), ay(k + 1))c) × V y
k+1 ⊆ Un

ay(k+1).

Define

Φ(y)(n) := ay(n + 1).

For each point y′ ∈ V y
n+1, we have y′ ∈ V y

k for all k = 1, . . . , n + 1. The sequence ay′(1), . . . , ay′(n + 1)
is bounded by the sequence ay(1), . . . , ay(n + 1), coordinate-wise: For k = 1, we have ay′(1) = ay(1) = 1. 
Assume that ay′(k) ≤ ay(k). Then

P([ay′(k), ay(k + 1))c) × {y′} ⊆ P([ay(k), ay(k + 1))c) × V y
k+1 ⊆ Un

ay(k+1),

and, by the minimality of the number ay′(k + 1), we have ay′(k + 1) ≤ ay(k + 1), too.
In summary, we have Φ(y′)(n) = ay′(n + 1) ≤ ay(n + 1) ≤ Φ(y)(n) for all points y′ ∈ V y

n+1. This shows 
that the function Φ is upper continuous.

Fix a point y ∈ Y and a natural number n. Let x ∈ [N]∞ be an element with Φ(y)(n) ≤ x(n). As 
ay(n + 1) = Φ(y)(n) ≤ x(n), there is a natural number k ≤ n such that x ∩ [ay(k), ay(k + 1)) = ∅. Thus,
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(x, y) ∈ P([ay(k), ay(k + 1))c) × {y} ⊆ Un
ay(k+1) ⊆ Un

Φ(y)(n),

and therefore Ψ(x, y)(n) ≤ Φ(y)(n). �
For filters, we obtain a productive version of Proposition 4.5.

Theorem 5.2. Let F be a filter and X ⊆ [N]∞ be an F -scale. For each F -Menger space Y , every upper 
continuous image of the product space (X ∪ [N]<∞) × Y in [N]∞ is ≤Fa

-bounded for some set a ∈ F+.

Proof. Let Ψ: (X ∪ [N]<∞) × Y → [N]∞ be an upper continuous function. Let Φ: Y → [N]∞ be as in the 
Productive Two Worlds Lemma (Lemma 5.1). Since the space Y is F -Menger, there is a function b ∈ [N]∞
such that Φ[Y ] ≤F b. As the set X is an F -scale, there is a function c ∈ [N]∞ such that b ≤F+ c ≤F x for 
all but less than b(F ) elements of X. Let a := [b ≤ c], an element of the semifilter F+. Then the cardinality 
of the set

Z := {x ∈ X : b �Fa
x }

is smaller than b(F ).
Fix a pair (x, y) ∈ (X \ Z) × Y . Then b ≤Fa

x and Φ(y) ≤F b. Since F is a filter, we have

[Φ(y) ≤ x] ⊇ [Φ(y) ≤ b] ∩ [b ≤ x] ∈ Fa.

This shows that Ψ[(X \ Z) × Y ] ≤Fa
b. Let z ∈ Z ∪ [N]<∞. Since the set {z} × Y is F -Menger, Ψ[{z} ×

Y ] ≤F cz for some function cz ∈ [N]∞. Since |Z ∪ [N]<∞| < b(F ), there is a function c ∈ [N]∞ such 
that { cz : z ∈ Z ∪ [N]<∞ } ≤F c. As F is a filter, we have Ψ[(Z ∪ [N]<∞) × Y ] ≤F c, and therefore 
Ψ[(X ∪ [N]<∞) × Y ] ≤Fa

{max{b(n), c(n)} : n ∈ N }. �
Theorem 5.3. Let F be a filter, and X ⊆ [N]∞ be an F -scale. In the realm of hereditarily Lindelöf spaces:

(1) For each F -Menger space Y , the product space (X ∪ [N]<∞) × Y is F+-Menger.
(2) If F is an ultrafilter, then the real set X ∪ [N]<∞ is productively F -Menger.

Proof. Every product of a metrizable Lindelöf space and a hereditarily Lindelöf space is Lindelöf. Apply 
Theorem 5.2. �

The following theorem was previously known for b-scales, a special kind of cF-scales [18, Theorem 6.5]. 
This theorem and the subsequent one improve upon earlier results [29, Corollary 4.4], asserting that the 
corresponding properties hold in all finite powers.

A semifilter S is meager if and only if there is a function h ∈ [N]∞ such that for each set s ∈ S, the set 
s ∩ [h(n), h(n +1)) is nonempty for almost all natural numbers n [23, Theorem 21]. For meager semifilters S, 
we have b(S) = b [29, Corollary 2.27], and S-Menger is equivalent to Hurewicz [29, Theorem 2.32]. The 
following theorem generalizes an earlier result [29, Theorem 2.28], using a similar proof.

Theorem 5.4. Let S be a meager semifilter, and X ⊆ [N]∞ be an S-scale. Then, in the realm of hereditarily 
Lindelöf spaces, the real set X ∪ [N]<∞ is productively Hurewicz.

Proof. Let Y be a hereditarily Lindelöf, Hurewicz space. Since the space Y is hereditarily Lindelöf, the 
product space (X ∪ [N]<∞) × Y is Lindelöf. Let Φ: X × Y → [N]∞ be an upper continuous function 
and Ψ: Y → [N]∞ be the upper continuous function provided by the Productive Two Worlds Lemma 
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(Lemma 5.1). Since the space Y is Hurewicz, its image Ψ[Y ] is ≤∗-bounded by some function b ∈ [N]∞. Let 
h ∈ [N]∞ be a witness for the semifilter S being meager. Define a function b̃ ∈ NN by

b̃(k) := b(h(n + 2))

for all natural numbers n and for k ∈ [h(n), h(n + 1)). Then Ψ[Y ] ≤∗ b ≤ b̃.
Since the set X is an S-scale, there is a function c ∈ [N]∞ such that b̃ ≤S+ c and all but less than b

functions x ∈ X belong to the set

X̃ := {x ∈ X : c ≤S x }.

Claim 5.5. The set Φ[(X̃ ∪ [N]<∞) × Y ] is ≤∗-bounded.

Proof. Fix a function x ∈ X̃. Then [c ≤ x] ∈ S, and thus the set [c ≤ x] ∩ [h(n), h(n + 1)) is nonempty for 
almost all natural numbers n. Let

d :=
{
n ∈ N : [b̃ ≤ c] ∩ [h(n− 1), h(n)) �= ∅

}
.

Then, for almost all natural numbers n ∈ d, there are natural numbers l ∈ [b̃ ≤ c] ∩ [h(n − 1), h(n)) and 
m ∈ [c ≤ x] ∩ [h(n), h(n + 1)), and we have

b(h(n + 1)) = b̃(l) ≤ c(l) ≤ c(m) ≤ x(m) ≤ x(h(n + 1)).

Thus, b(k) ≤ x(k) for almost all natural numbers k ∈ e := {h(n + 1) : n ∈ d }.
Let y ∈ Y . Since Ψ[Y ] ≤∗ b, for almost all natural numbers k ∈ e we have

Ψ(y)(k) ≤ b(k) ≤ x(k),

and thus

Φ(x, y)(k) ≤ Ψ(y)(k) ≤ b(k).

Hence, the set Φ[X̃ × Y ] is ≤∗-bounded on an infinite set, and thus [10, Fact 3.4] ≤∗-bounded. �
As | (X \ X̃) ∪ [N]<∞ | < b and the space Y is Hurewicz, the image Φ[((X \ X̃) ∪ [N]<∞) ×Y ] is a union of 

less than b sets that are ≤∗-bounded, and is thus ≤∗-bounded. Thus, the entire image Φ[(X ∪ [N]<∞) × Y ]
is ≤∗-bounded. �
6. Cofinal S-scales

For a semifilter S, the following special type of S-scale is a natural generalization of the earlier notion of 
cofinal b(S)-scale [29, Definition 2.22].

Definition 6.1. Let S be a semifilter. A set X ⊆ [N]∞ with |X| ≥ b(S) is a cofinal S-scale if for each function 
b ∈ [N]∞, we have

b ≤S x

for all but less than b(S) functions x ∈ X.
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For example, a set X ⊆ [N]∞ is a cofinal [N]∞-scale if and only if the set X is d-unbounded. Thus, for 
some semifilters S, cofinal S-scales provably exist. But this is not always the case.

Proposition 6.2. Let S be a semifilter.

(1) Cofinal S-scales are ≤S+-unbounded.
(2) Every subset, of cardinality b(S), of a cofinal S-scale is a cofinal S-scale.
(3) If there is a cofinal S-scale, then b(S+) ≤ b(S).
(4) If b(S) = d, then there is a cofinal S-scale [29, Lemma 2.23]. �
Corollary 6.3. Let F be a filter. The following assertions are equivalent:

(1) There is a cofinal F -scale.
(2) b(F ) = b(F+).

Proof. (1) ⇒ (2): Since F is a filter, we have F ⊆ F+, and thus b(F ) ≤ b(F+). Apply Proposition 6.2(3).
(2) ⇒ (1): A ≤F+-unbounded set { bα : α < b(F ) } ⊆ [N]∞ is ≤F -cofinal. For each ordinal number 

α < b(F ), let xα ∈ [N]∞ be such that { bβ, xβ : β < α } ≤F xα. As F is a filter, the relation ≤F is transitive, 
and thus the set { xα : α < b(F ) } is a cofinal F -scale. �

In particular, since b(cF) = b and b(cF+) = b([N]∞) = d, there are cofinal cF-scales if and only if b = d.
The proof of the following theorem is similar to that of Theorems 5.2–5.3(1).

Theorem 6.4. Let F be a filter and X ⊆ [N]∞ be a cofinal F -scale. Then, in the realm of hereditarily Lindelöf 
spaces, the real set X ∪ [N]<∞ is productively F -Menger. �
Theorem 6.5. Let X ⊆ [N]∞ be a cofinal cF-scale. Then the real set X ∪ [N]<∞ is productively S-Menger 
for all semifilters S.

Proof. We modify the proof of Theorem 5.2. Let Y be an S-Menger space, and Ψ: (X∪[N]<∞) ×Y → [N]∞ be 
an upper continuous function. Let Φ: Y → [N]∞ be as in the Productive Two Worlds Lemma (Lemma 5.1). 
Since the space Y is S-Menger, there is a function b ∈ [N]∞ such that Φ[Y ] ≤S b. As the set X is a cofinal 
cF-scale, the cardinality of the set

Z := {x ∈ X : b �∗ x }

is smaller than b.
Fix a pair (x, y) ∈ (X \ Z) × Y . Then b ≤∗ x and [Φ(y) ≤ b] ∈ S. Thus, for almost all natural numbers 

n ∈ [Φ(y) ≤ b], we have Φ(y)(n) ≤ b(n) ≤ x(n), and therefore

Ψ(x, y)(n) ≤ Φ(y)(n) ≤ b(n).

Since semifilters are invariant under finite modifications of their elements, we have Ψ(x, y) ≤S b. This shows 
that Ψ[(X \ Z) × Y ] ≤S b.

The remainder of the proof is identical to that of Theorem 5.2. �
A superfilter (also called grille or coideal) is a semifilter S such that a ∪ b ∈ S implies a ∈ S or b ∈ S. 

A semifilter S is a superfilter if and only if the semifilter S+ is a filter. Equivalently, a superfilter is a union 
of a family of ultrafilters. For example, the set [N]∞ = cF+ is a superfilter.
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Proposition 6.6. Let S be a superfilter. A set X ⊆ [N]∞ is a cofinal S-scale if and only if it is an S-scale.

Proof (⇐). Let F := S+. If b ≤S+ c ≤S x, then b ≤F c ≤F+ x, and since F is a filter, we have b ≤F+ x, 
that is, b ≤S x. �

The proof of the following assertion is similar to that of Proposition 4.5.

Proposition 6.7. Let S be a semifilter. For each cofinal S-scale X, the real set X ∪ [N]<∞ is S-Menger. �
Let U be an ultrafilter, and X ⊆ [N]∞ be a U -scale. By Proposition 6.6, the set X is in fact a cofinal 

U -scale. Using Proposition 6.7, we obtain an alternative derivation of Corollary 4.6. Similarly, Theorem 6.4
generalizes Theorem 5.3(2).

Theorem 6.4 cannot be extended to all semifilters, and not even to all superfilters: By Theorems 3.2–3.3, 
the hypothesis d ≤ r implies that Theorem 6.4 does not hold for the superfilter [N]∞. The latter assertion 
also follows from the following theorem that is, in fact, established by the proof of Theorem 4.7.

Theorem 6.8. Assume that b = d. Let S be a semifilter. The following assertions are equivalent:

(1) The semifilter S is nonmeager.
(2) There are an S-scale X ⊆ [N]∞ and a d-concentrated real set Y such that the planar set (X∪ [N]<∞) ×Y

is not Menger.
(3) There are a cofinal S-scale X ⊆ [N]∞ and a d-concentrated real set Y such that the planar set (X ∪

[N]<∞) × Y is not Menger. �
A related result of Repovš and Zdomskyy [19, Theorem 3.3] asserts that, if b = d, then there are ultrafilters 

U1 and U2, a (cofinal) U1-scale X1, and a (cofinal) U2-scale X2, such that the planar set (X1 ∪ [N]<∞) ×
(X2 ∪ [N]<∞) is not Menger.

Theorem 6.9. Assume that b = d. For every nonmeager filter F :

(1) In the realm of hereditarily Lindelöf spaces, there is a productively F -Menger space that is not Hurewicz 
and not productively Menger.

(2) The property F -Menger is strictly between Hurewicz and Menger.

Proof of (1). By Theorem 6.8(3) and Theorem 6.4, using that products of Hurewicz sets and d-concentrated 
real sets are Menger [30, Theorem 4.6]. �
7. Comments and open problems

Except for the last subsection of this section, we restrict attention to real sets throughout this section. 
Thus, we omit the adjective real almost throughout this section.

The Menger productivity problem, whether Menger’s property is consistently preserved by finite products, 
remains open. The hypothesis d ≤ r provides two Menger sets whose product is not Menger (Theorems 2.7
and 3.2). It is well known that this immediately provides a Menger set whose square is not Menger. Indeed, 
assume that X and Y are Menger sets such that the planar set X × Y is not Menger. The set X ∪ Y is 
Menger. We may assume that X ⊆ (0, 1) and Y ⊆ (2, 3). Then the set X×Y is a closed subset of the square 
(X ∪ Y )2. Menger’s property is hereditary for closed subsets.
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7.1. A combinatorial characterization of the cardinal number min{r, d}

Aubrey [1] proved that min{d, u} ≤ r. Since r ≤ u, the hypothesis d ≤ r in Theorem 3.3 is equivalent to 
the hypothesis d ≤ u.

Initially, we proved Theorem 3.3 using a new hypothesis.

Definition 7.1. Let bidi be the minimal cardinality of a set X ⊆ [N]∞ such that there is no set b ∈ [N]∞,∞

with X ≤∞ b, bc.

We observed that max{b, cov(M)} ≤ bidi ≤ min{r, d}, and needed that bidi = d to carry out our 
construction. It is immediate that bidi ≤ d, and the argument in the proof of the implication (2) ⇒ (1)
in Theorem 3.3 shows that bidi ≤ r. Answering our question, Mejía pointed out to us that, by a result of 
Kamburelis and Węglorz [13], our upper bound on the cardinal number bidi is tight [16] (see Lemma 3.4). 
We thus have the following characterization of min{r, d}.

Proposition 7.2. bidi = min{r, d}. �
7.2. Which κ-unbounded sets are not productively Menger?

There are (e.g., by Proposition 4.2), in ZFC, b-unbounded sets. Every union of less than max{b, g}
Menger sets is Menger [31,28]. Since the hypothesis b < g is consistent, Theorem 2.7 and Corollary 2.11 do 
not extend to the case κ = b, or to any cardinal number that is consistently smaller than max{b, g}.

For a κ-unbounded set, which we may assume to have cardinality κ, the present proof of Theorem 2.7
requires a partition d =

⋃
α<κ Iα such that for each set J ⊆ κ with |J | < d, we have 

∣∣⋃
α∈J Iα

∣∣ < d. It is 
not difficult to see that this implies that κ ∈ {cf(d), d}.

Problem 7.3. Assume that κ is a cardinal number with cf(d) < κ < d. Let X be a κ-unbounded set in [N]∞. 
Is there necessarily a d-concentrated set Y such that the planar set X × Y is not Menger?

7.3. Products of Hurewicz sets

Scheepers [25, Problem 6.7] has also asked whether, consistently, every product of two Hurewicz sets is 
Hurewicz. It seems that a combination of the methods of this paper and ones from a recent paper of Repovš 
and Zdomskyy [20] yields a positive answer. We plan to carry out this program, together with Zdomskyy, 
in a sequel paper.

Problem 7.4. Find mild hypotheses implying that there are two Hurewicz sets whose product is not Hurewicz.

In the notation of Section 4, Menger’s property is [N]∞-Menger, and Hurewicz’s property is cF-Menger. 
By Theorems 3.2 and 3.3, [N]∞-scales need not be productively [N]∞-Menger. In contrast, by Theorem 5.4, 
cF-scales are productively cF-Menger. Thus, modern constructions of Hurewicz sets do not help in regard 
to Problem 7.4.

The classic example of a Hurewicz set (if not counting σ-compact sets, which are productively Hurewicz) 
is a Sierpiński set [26]. If b = cov(N ) = cof(N ), then there is a b-Sierpiński set (which is Hurewicz) whose 
square is not Hurewicz [21, Theorem 43]. No more general constructions are known.

Problem 7.5. Does the Continuum Hypothesis imply that no Sierpiński set is productively Hurewicz? Pro-
ductively Menger?
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By Theorem 4.8, if b = d, then every productively Menger set is productively Hurewicz. By the discussion 
following that theorem, if b < g then there are productively Menger sets that are not Hurewicz.

Problem 7.6. Assume the Continuum Hypothesis. Do the classes of productively Menger and productively 
Hurewicz sets coincide?

Recall that for meager semifilters S, being S-Menger is equivalent to being Hurewicz [29, Theorem 2.32]. 
By Theorem 5.4, in this case, for each S-scale X, the set X ∪ [N]<∞ is productively S-Menger.

Problem 7.7. Assume the Continuum Hypothesis. For which semifilters S there is an S-scale X such that 
the set X ∪ [N]<∞ is not productively S-Menger?

Thus meager semifilters do not have the property in Problem 7.7. By Theorem 6.4 and Proposition 6.6, 
ultrafilters are also not in that category. But the full semifilter [N]∞ is in this category, by Theorem 6.8.

A b-scale [26] is a particularly simple kind of a cF-scale, for cF the filter of cofinite sets.

Problem 7.8. Let X ⊆ [N]∞ be a b-scale. Is the set X ∪ [N]<∞ necessarily productively Menger?

If u < g, then every d-concentrated set (in particular, every union of an S-scale, for some semifilter S, 
and the set [N]<∞) is productively Menger [18, Theorem 4.7].

7.4. Strictly unbounded sets

Say that a set X ⊆ [N]∞ is strictly unbounded if for every set A ⊆ [N]∞ of cardinality smaller than d there 
is a function x ∈ X such that A ≤∞ x. Let X ⊆ [N]∞ be a strictly unbounded set. By the argument in the 
proof of Theorem 4.8(1), the set X contains a d-unbounded set. By Theorem 2.7, there is a d-concentrated 
set Y such that the planar set X × Y is not Menger. If b = d, then every unbounded set in [N]∞ is strictly 
unbounded. We thus obtain a generalization of Theorem 4.8.

The construction in Theorem 3.3 that provides a Menger set that is not productively Menger provides, 
in fact, a Menger strictly unbounded set.

A negative answer to the second item of the following problem implies a negative solution for the Menger 
productivity problem.

Problem 7.9.

(1) Is it consistent that r < d and there are strictly unbounded Menger sets?
(2) Is it consistent that there are no strictly unbounded Menger sets?

7.5. General spaces

Let S be a semifilter. Restricting the definition of S-Menger spaces to countable open covers, we obtain 
the definition of countably S-Menger spaces. This makes it possible to eliminate the adjective “hereditarily 
Lindelöf” in most of our theorems.

For general Hurewicz spaces, the following problem remains open, even for the so-called b-scales [26, 
Definition 2.8].

Problem 7.10. Let cF be the semifilter of cofinite sets, X ⊆ [N]∞ be an cF-scale, and Y be a Hurewicz 
space. Is the product space (X ∪ [N]<∞) × Y necessarily Hurewicz?
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Theorem 5.4 provides a positive answer for hereditarily Lindelöf spaces Y . But this restriction is only 
needed for deducing that the product space (X ∪ [N]<∞) ×Y is Lindelöf (and similarly for the other results 
in Section 4). A positive solution for the following problem would suffice.

Problem 7.11. Let X be a real set of cardinality smaller than b, and Y be a Hurewicz space. Is the product 
space X × Y necessarily Lindelöf?

We consider productive properties of general S-Menger spaces in a sequel paper [22]. There, the results 
have a somewhat different character.
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